



# MEASURING URBAN SPRAWL AND VALIDATING SPRAWL MEASURES

Reid Ewing and Shima Hamidi

Prepared for:

National Cancer Institute, National Institutes of Health Ford Foundation Smart Growth America

## Abstract

Across the nation, the debate over metropolitan sprawl and its impacts continues. A decade ago, Smart Growth America (SGA) and the U.S. Environmental Protection Agency (EPA) sought to raise the level of this debate by sponsoring groundbreaking research on sprawl and its quality-of-life consequences (Ewing et al. 2002; Ewing et al. 2003a, 2003b, 2003c). The original sprawl indices were made available to researchers who wished to explore the various costs and benefits of sprawl. They have been widely used in outcome-related research, particularly in connection with public health. Sprawl has been linked to physical inactivity, obesity, traffic fatalities, poor air quality, residential energy use, emergency response times, teenage driving, lack of social capital, and private-vehicle commute distances and times (Ewing et al. 2003a; Ewing et al. 2003b; Ewing et al. 2003c; Kelly-Schwartz et al. 2004; Sturm and Cohen 2004; Cho et al. 2006; Doyle et al. 2006; Ewing et al. 2006; Kahn 2006; Kim et al. 2006; Plantinga and Bernell 2007; Ewing and Rong 2008; Joshu et al. 2008; Stone 2008; Trowbridge and McDonald 2008; Fan and Song 2009; McDonald and Trowbridge 2009; Trowbridge et al. 2009; Lee et al. 2009; Nguyen 2010; Stone et al. 2010; Schweitzer and Zhou 2010; Zolnik 2011; Holcombe and Williams 2012; Griffin et al. 2013; Bereitschaft and Debbage 2013).

In this study for the National Cancer Institute, the Brookings Institution, and Smart Growth America, we begin in Chapter 1 by updating the original county indices to 2010. As one would expect, the degree of county sprawl does not change dramatically over a 10-year period. Also, given their fixed boundaries, most counties become more compact (denser and with smaller blocks) over the 10-year period. Sprawl occurs mainly as previously rural counties (in 2000) outside metropolitan areas become low density suburbs and exurbs of metropolitan areas (in 2010).

In Chapter 2, we develop refined versions of the indices that incorporate more measures of the built environment. The refined indices capture four distinct dimensions of sprawl, thereby characterizing county sprawl in all its complexity. The four are development density, land use mix, population and employment centering, and street accessibility. The dimensions of the new county indices parallel the metropolitan indices developed by Ewing et al. (2002), basically representing the relative accessibility provided by the county. The simple structure of the original county sprawl index has become more complex, but also more nuanced and comprehensive, in line with definitions of sprawl in the technical literature.

In Chapter 3, we develop metropolitan sprawl indices that, like the refined county indices, have four distinct dimensions-- development density, land use mix, population and employment centering, and street accessibility. Compared to metropolitan sprawl indices from the early 2000s, these new indices

incorporate more variables and hence have more construct validity. For example, the earlier effort defined density strictly in terms of population concentrations, while this effort considers employment concentrations as well. The reason for developing metropolitan sprawl indices, rather than limiting ourselves to counties, is that metropolitan areas are natural units of analysis for certain quality-of-life outcomes.

In Chapter 4, we conduct one of the first longitudinal analysis of sprawl to see which areas are sprawling more over time, and which are sprawling less or actually becoming more compact. To conduct such as analysis, we need to employ a new level of geography, the census urbanized area. In contrast of counties and metropolitan areas, urbanized areas expand incrementally as areas grow and rural tracts are converted to urban and suburban uses. The analysis shows that, on average, urban sprawl in the U.S. increased between 2000 and 2010, but that there are many exceptions to this generalization.

Finally, in chapter 5, we develop compactness indices for census tracts within metropolitan areas. We know from the travel and public health literatures that there is a demand in the research community for built environmental metrics at the sub-county level, what might be described as the community or neighborhood scale.

The appendices provide values of compactness/sprawl indices for census tracts, counties, metropolitan areas, and urbanized areas. Data are available in electronic form at <a href="http://gis.cancer.gov/tools/urban-sprawl/">http://gis.cancer.gov/tools/urban-sprawl/</a>

## **Table of Contents**

| Abstract                                             | 1  |
|------------------------------------------------------|----|
| Chapter 1. Updated County Sprawl Index               | 5  |
| Update to 2010                                       | 7  |
| Chapter 2. Refined County Sprawl Measures            | 11 |
| Density                                              | 11 |
| Mixed Use                                            | 12 |
| Centering                                            | 14 |
| Street Accessibility                                 | 17 |
| Relationship Among Compactness Factors               | 18 |
| Composite Index                                      | 18 |
| Greater Validity of New Index                        | 20 |
| Chapter 3. Derivation of Metropolitan Sprawl Indices | 25 |
| Methods                                              | 25 |
| Sample                                               | 25 |
| Variables                                            | 26 |
| Results                                              | 28 |
| Individual Compactness/Sprawl Factors                | 28 |
| Overall Compactness/Sprawl Index for 2010            |    |
| Discussion                                           | 32 |
| Chapter 4. Urbanized Areas: A Longitudinal Analysis  | 79 |
| Methods                                              | 79 |
| Sample                                               | 79 |
| Variables                                            | 79 |
| Results                                              | 82 |
| Individual Compactness/Sprawl Factors                | 82 |
| Overall Compactness/Sprawl Index for 2010            | 83 |
| Overall Compactness/Sprawl Index for 2000            | 84 |
| Discussion                                           | 85 |
| Chapter 5. Derivation of Census Tract Sprawl Indices | 86 |
| Chapter 6. Conclusion                                |    |
| References                                           |    |

| Appendix A. County Compactness Indices for 2010, 2000, and Changes    | 91  |
|-----------------------------------------------------------------------|-----|
| Appendix B. County Compactness Factors and Composite Indices for 2010 | 115 |
| Appendix C. 2010 Metropolitan Indices                                 | 141 |
| Appendix D. Urbanized Areas Compactness Indices 2010                  | 149 |
| Appendix E. Urbanized Areas Compactness Indices 2000                  | 154 |

## **Chapter 1. Updated County Sprawl Index**

Ewing et al. (2003b; 2003c) originally estimated a single county sprawl index for each of 448 metropolitan counties or statistically equivalent entities (e.g., independent towns and cities). These counties comprised the 101 most populous metropolitan statistical areas, consolidated metropolitan statistical areas, and New England county metropolitan areas in the United States as of the 1990 census, the latest year for which metropolitan boundaries were defined as that study began. Nonmetropolitan counties, and metropolitan counties in smaller metropolitan areas, were excluded from the sample. More than 183 million Americans, nearly two-thirds of the United States population, lived in these 448 counties in 2000.

Six variables were part of the original county sprawl index (as shown in Table 1). U.S. Census data were used to derive three population density measures for each county:

- gross population density in persons per square mile (popden)
- percentage of the county population living at low suburban densities, specifically, densities between 100 and 1,500 persons per square mile, corresponding to less than one housing unit per acre (lt1500)
- percentage of the county population living at medium to high urban densities, specifically, more than 12,500 persons per square mile, corresponding to about 8 housing units per acre, the lower limit of density needed to support mass transit (gt12500)

In deriving population density measures, census tracts were excluded if they had fewer than 100 residents per square mile (corresponding to rural areas, desert tracts, and other undeveloped lands). Ewing et al. were only concerned with sprawl in developed areas where the vast majority of residents live.

A fourth density variable was derived from estimated urban land area for each county from the National Resources Inventory of the U.S. Department of Agriculture.

• net population density of urban places within the county (urbden)

Data reflecting street accessibility for each county were also obtained from the U.S. Census. Street accessibility is related to block size since smaller blocks translate into shorter and more direct routes. A census block is defined as a statistical area bounded on all sides by streets, roads, streams, railroad tracks, or geopolitical boundary lines, in most cases. A traditional urban neighborhood is composed of intersecting bounding streets that form a grid, with houses built on the four sides of the block, facing these streets. The length of each side of that block, and therefore its block size, is relatively small. By contrast, a contemporary suburban neighborhood does not make connections between adjacent cul-desacs or loop roads. Instead, local streets only connect with the street at the subdivision entrance, which is on one side of the block boundary. Thus, the length of a side of this block is quite large, and the block itself often encloses multiple subdivisions to form a superblock, a half mile or more on a side. Large block sizes indicate a relative paucity of street connections and alternate routes.

Two street accessibility variables were computed for each county:

- average block size (avgblk)
- percentage of blocks with areas less than 1/100 square mile, the size of a typical traditional urban block bounded by sides just over 500 feet in length (smlblk).

Blocks larger than one square mile were excluded from these calculations, since they were likely to be in rural or other undeveloped areas.

The six variables were combined into one factor representing the degree of sprawl within the county. This was accomplished via principal component analysis, an analytical technique that takes a large number of correlated variables and extracts a small number of factors that embody the common variance in the original data set. The extracted factors, or principal components, are weighted combinations of the original variables. When a variable is given a great deal of weight in constructing a principal component, we say that the variable loads heavily on that component. The greater the correlation between an original variable and a principal component, the greater the loading and the more weight the original variable is given in the overall principal component score. The more highly correlated the original variables, the more variance is captured by a single principal component.

The principal component selected to represent sprawl was the one capturing the largest share of common variance among the six variables, that is, the one upon which the observed variables loaded most heavily. This one component accounted for almost two-thirds of the variance in the dataset. Because this component captured the majority of the combined variance of these variables, no subsequent components were considered.

To arrive at a final index, Ewing et al. transformed the principal component, which had a mean of 0 and standard deviation of 1, to a scale with a mean of 100 and standard deviation of 25. This transformation produced a more familiar metric (like an IQ scale) and ensured that all values would be positive, thereby allowing us to take natural logarithms and estimate elasticities.

The bigger the value of the index, the more compact the county. The smaller the value, the more sprawling the county. Scores ranged from a high of 352 to a low of 63. At the most compact end of the scale were four New York City boroughs, Manhattan, Brooklyn, Bronx, and Queens; San Francisco County; Hudson County (Jersey City); Philadelphia County; and Suffolk County (Boston). At the most sprawling end of the scale were outlying counties of metropolitan areas in the Southeast and Midwest such as Goochland County in the Richmond, VA metropolitan area and Geauga County in the Cleveland, OH metropolitan area. The county sprawl index was positively skewed. Most counties clustered around intermediate levels of sprawl. In the U.S., few counties approach the densities of New York or San Francisco.

For these counties, the original sprawl index was validated against journey to work, adult obesity, and traffic fatality data (Ewing et al. 2003a; Ewing et al. 2003b; Ewing et al. 2003c). Later, the same county sprawl index was used to model the built environment in a study of youth obesity (Ewing et al. 2006). For this study, the index was computed for additional counties or county equivalents in order to have

sprawl data for more National Longitudinal Survey of Youth (NLSY97) respondents. The 954 counties or county equivalents in the expanded sample represented the vast majority of counties lying within U.S. metropolitan areas, as defined by the U.S. Census Bureau in December 2003. Almost 82% of the U.S. population lived in metropolitan counties for which county sprawl indices were now available. Most recent research on sprawl and its impacts has made use of this expanded dataset.

## Update to 2010

In updating the original county sprawl index to 2010, five of the six variables were derived in the exact same way as for 1990 and 2000. U.S. Census files for summary levels 140 (census tracts) and 101 (census blocks) were downloaded from American FactFinder. Population data were extracted for all census tracts in all metropolitan counties. Land area data were extracted for all census blocks in all metropolitan counties. Ninety-nine metropolitan counties were lost to the sample because they had no census tracts averaging 100 persons per square mile or more. They were deemed to be rural.

The sixth variable, net density of urban areas within the county, was originally computed using data on "urban and built up uses" from the National Resources Inventory of the U.S. Department of Agriculture. The most recent NRI (2007) does not provide data at the county level. Therefore the U.S. Geological Survey's National Land Cover Database (NLCD) was used instead. NLCD serves as the definitive Landsatbased, 30-meter resolution, land cover database for the Nation. It is a raster dataset providing spatial reference for land surface classification (for example, urban, agriculture, forest). It can be geoprocessed to any geographic unit.

For the current work, the urban land area was generated at the county level using NLCD 2006 (the latest product) and county geography (2010) for the entire U.S. Using the "Tabulate Area" spatial analyst tool within ArcGIS, urban land areas within each county were calculated. The noncontiguous areas in the same county were aggregated resulting in total urban area in square miles. The value codes treated as urban were:

21. Developed, Open Space - Areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes.

22. Developed, Low Intensity - Areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20% to 49% percent of total cover. These areas most commonly include single-family housing units.

23. Developed, Medium Intensity – Areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50% to 79% of the total cover. These areas most commonly include single-family housing units.

24. High Intensity - Highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80% to 100% of the total cover.

The NRI and NLCD datasets are fairly comparable (see Appendix A), making the county sprawl indices for 1990, 2000, and 2010 fairly comparable. However, NLCD is only available for the continental U.S. Therefore counties and county equivalents from Alaska, Hawaii, and Puerto Rico, 72 in total, were lost to the sample.

Once again, principal component analysis was used to reduce the six variables to a single index. This index accounts for 59 percent of the variance in the original six variables. Factor loadings are shown in Table 1.1.

| Observed variable  | Factor loading* |
|--------------------|-----------------|
| popden             | 0.858           |
| lt1500             | -0.658          |
| gt12500            | 0.821           |
| urbden             | 0.876           |
| avgblk             | -0.664          |
| smlblk             | 0.711           |
| Eigenvalue         | 3.56            |
| Explained variance | 59.3%           |

Table 1.1. County Sprawl Index Variables and Factor Loadings in 2010

\* Correlation with county sprawl index

We transformed the overall compactness score into an index with a mean of 100 and a standard deviation of 25. This was done for the sake of consistency and ease of understanding. With this transformation, the more compact counties have index values above 100, while the more sprawling have values below 100.

Appendix A contains county sprawl (compactness) indices for 994 county and county equivalents in 2010. The 10 most compact and 10 most sprawling counties are shown in Tables 1.2 and 1.3. The most compact counties are as expected, central counties of large, older metropolitan areas. The most sprawling counties are outlying counties of large metropolitan areas, or component counties of smaller metropolitan areas. Values range from 54 for Jackson County outside Topeka, Kansas, the most sprawling county in 2010, to 464 for New York County (Manhattan), the most compact county in 2010. Appendix A also contains estimates of county sprawl in 2000, derived by applying the 2010 component score coefficient values to data for counties in 2000. Finally, the appendix presents changes in county sprawl, measured equivalently, between the two census years.

| Table 1.2. 10 | 0 Most Compact | Counties in 2010 | According to the Six Variable | Index |
|---------------|----------------|------------------|-------------------------------|-------|
|---------------|----------------|------------------|-------------------------------|-------|

|   | County              | Metropolitan Area                                  | Index |
|---|---------------------|----------------------------------------------------|-------|
| 1 | New York County, NY | New York-Northern New Jersey-Long Island, NY-NJ-PA | 463.9 |
| 2 | Kings County, NY    | New York-Northern New Jersey-Long Island, NY-NJ-PA | 341.4 |
| 3 | Bronx County, NY    | New York-Northern New Jersey-Long Island, NY-NJ-PA | 331.5 |

| 4  | Queens County, NY        | New York-Northern New Jersey-Long Island, NY-NJ-PA | 272.1 |
|----|--------------------------|----------------------------------------------------|-------|
| 5  | San Francisco County, CA | San Francisco-Oakland-Fremont, CA 2                |       |
| 6  | Hudson County, NJ        | New York-Northern New Jersey-Long Island, NY-NJ-PA | 228.8 |
| 7  | Suffolk County, MA       | Boston-Cambridge-Quincy, MA-NH                     | 217.1 |
| 8  | Philadelphia County, PA  | Philadelphia-Camden-Wilmington, PA-NJ-DE-MD        | 216.8 |
| 9  | District of Columbia, DC | Washington-Arlington-Alexandria, DC-VA-MD-WV       | 193.3 |
| 10 | Richmond County, NY      | New York-Northern New Jersey-Long Island, NY-NJ-PA | 190.1 |

Table 1.3. 10 Most Sprawling Counties in 2010 According to the Six Variable Index

|     |                    | Metropolitan Area                        | Index |
|-----|--------------------|------------------------------------------|-------|
| 985 | Ford County, IL    | Champaign-Urbana, IL                     | 67.3  |
| 986 | Osage County, KS   | Topeka, KS                               | 66.9  |
| 987 | Jasper County, IN  | Chicago-Joliet-Naperville, IL-IN-WI      | 66.8  |
| 988 | Grant County, AR   | Little Rock-North Little Rock-Conway, AR | 66.8  |
| 989 | Tipton County, IN  | Kokomo, IN                               | 66.4  |
| 990 | Chester County, TN | Jackson, TN                              | 65.4  |
| 991 | Morrow County, OH  | Columbus, OH                             | 63.4  |
| 992 | Greene County, NC  | Greenville, NC                           | 63.3  |
| 993 | Polk County, MN    | Grand Forks, ND-MN                       | 61.1  |
| 994 | Jackson County, KS | Topeka, KS                               | 54.6  |

Figure 1.1 is a plot of 2010 sprawl index values vs. 2000 sprawl index values computed with the same component score coefficient values. As one would expect, the degree of county sprawl does not change dramatically over a 10-year period. Figure 1.2 is a histogram of changes in county sprawl values between 2000 and 2010, where 2000 sprawl values are computed using the 2010 component score coefficient values. As one would expect, given their fixed boundaries, most counties become more compact (denser and with smaller blocks) over the ten-year period. Sprawl occurs mainly as previously rural counties (in 2000) outside metropolitan areas become low-density suburbs and exurbs of metropolitan areas (in 2010).

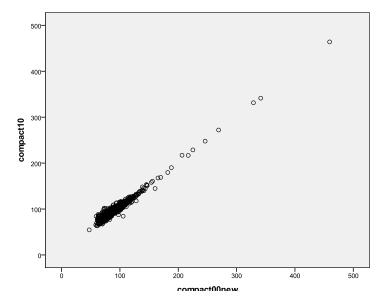
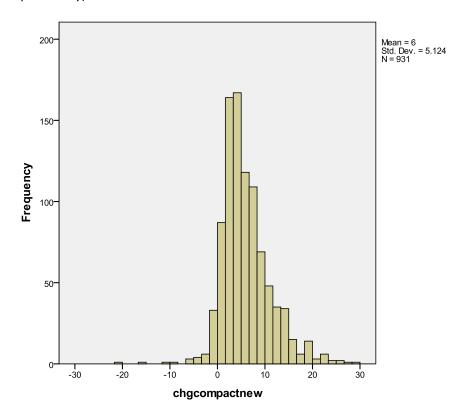




Figure 1.1. Scatterplot of 2010 Sprawl Index vs. 2000 Sprawl Index (Estimated Equivalently)

Figure 1.2. Histogram of Changes in County Sprawl Index Between 2000 and 2010 (Estimated Equivalently)



## **Chapter 2. Refined County Sprawl Measures**

A literature review by Ewing (1997) found poor accessibility to be the common denominator of sprawl. Sprawl is viewed as any development pattern in which related land uses have poor access to one another, leaving residents with no alternative to long distance trips by automobile. Compact development, the polar opposite, is any development pattern in which related land uses are highly accessible to one another, thus minimizing automobile travel and attendant social, economic, and environmental costs. The following patterns are most often identified in the literature: scattered or leapfrog development, commercial strip development, uniform low-density development, or single-use development (with different land uses segregated from one another, as in bedroom communities). In scattered or leapfrog development, residents and service providers must pass by vacant land on their way from one developed use to another. In classic strip development, the consumer must pass other uses on the way from one store to the next; it is the antithesis of multipurpose travel to an activity center. Of course, in low-density, single-use development, everything is far apart due to large private land holdings and segregation of land uses.

While the technical literature on sprawl focuses on land use patterns that produce poor regional accessibility, poor accessibility is also a product of fragmented street networks that separate urban activities more than need be. When asked, planners now routinely associate sprawl with sparse street networks as well as dispersed land use patterns.

The original county sprawl index operationalized only two dimensions of urban form—residential density and street accessibility. Our grant from the National Institutes of Health (NIH) provides for the development of refined measures of county compactness or, conversely, county sprawl. These measures are modeled after the more complete metropolitan sprawl indices developed by Ewing et al. (2002). The refined indices operationalize four dimensions, thereby characterizing county sprawl in all its complexity. The four are density, mix, centering, and street accessibility. The dimensions of the new county indices parallel the metropolitan indices, basically representing the relative accessibility provided by the county.

The full set of variables was used to derive a refined set of compactness/sprawl factors using principal component analysis. One principal component represents population density, another land use mix, a third centering, and a fourth street accessibility. County principal component values, standardized such that the mean value of each is 100 and the standard deviation is 25, are presented in Appendix B. The simple structure of the original county sprawl index has become more complex, but also more nuanced and comprehensive, in line with definitions of sprawl in the technical literature.

#### Density

Low residential density is on everyone's list of sprawl indicators. Our first four density variables are the same as in the original sprawl index, gross density of urban and suburban census tracts (popden), percentage of the population living at low suburban densities (lt1500), percentage of the population

living at medium to high urban densities (gt12500), and urban density based on the National Land Cover Database (urbden).

The fifth density variable is analogous to the first, except it is derived with employment data from the Local Employment Dynamics (LED) database rather than population data from the 2010 Census. The LED database is assembled by the Census Bureau through a voluntary partnership with state labor market information agencies. The data provide unprecedented details about America's jobs, workers, and local economies. The LED data, available from 2002 to 2010, are collected at census block geography level and can be aggregated to any larger geography, in this case block groups. LED variables include total number of jobs, average age of workers, monthly earnings, and as of 2009 sex, race, ethnicity, and education levels. In this case, LED data were processed for the year 2010. The data were aggregated from census block geography to census block group geography to generate total jobs by two-digit NAICS code for every block group in the nation, except those in Massachusetts, which doesn't participate in the program. The density variable derived from the LED database is:

• gross employment density of urban and suburban census tracts (empden)

Principal components were extracted from the five density-related variables, and the principal component that accounted for the greatest variance became the county density factor. Factor loadings (that is, correlations of these variables with the density factor) are shown in Table 2.1. The eigenvalue of the density factor is 3.56, which means that this one factor accounts for more of the variance in the original dataset than three of the component variables combined. In other words, the density factor accounts for more than 70 percent of the total variance in the data set. As expected, one of the variables loads negatively on the density factor, that being the percentage of population living at less than 1,500 persons per square mile. The rest load positively. Thus, for all component variables, higher densities translate into higher values of the density factor.

| Observed variable  | Factor loading* |
|--------------------|-----------------|
| popden             | 0.983           |
| lt1500             | 0.848           |
| gt12500            | -0.440          |
| urbden             | 0.850           |
| empden             | 0.977           |
| Eigenvalue         | 3.56            |
| Explained variance | 71.1%           |

Table 2.1. Variable Loadings on the County Density Factor for 2010

\* Correlation with the density factor

## **Mixed Use**

Three types of mixed-use measures are found in the land use-travel literature: those representing relative balance between jobs and population within subareas of a region; those representing the diversity of land uses within subareas of a region; and those representing the accessibility of residential

uses to nonresidential uses at different locations within a region. In this study, all three types were estimated for counties in our sample and became part of a mix factor.

The first two variables were calculated for each block group using block-level population data from the 2010 Census, and block-level employment data from the 2010 LED database. For the first variable, each block group centroid was buffered with a one-mile ring, and jobs and population were summed for blocks within the ring. One-mile rings were used to standardize geography for census block groups, which vary widely in size, making balance easier to achieve in the larger block groups. The resulting job and population totals were used to compute a job-population balance measure.<sup>1</sup> This variable equals 1 for block groups with the same ratio of jobs-to-residents within the one-mile ring as the metropolitan area as a whole; 0 for block groups with only jobs or residents within the one-mile ring, not both; and intermediate values for intermediate cases. All values were weighted by the sum of block group jobs and residents as a percentage of the county total to obtain:

• countywide average job-population balance (jobpop).

For the second mixed-use variable, each block group centroid was again buffered with a one-mile ring, and jobs by sector were summed for blocks within the ring. An entropy formula was then used to compute a measure of job mix.<sup>2</sup> The variable equals 1 for block groups with equal numbers of jobs in each sector within the ring; 0 for block groups with all jobs in a single sector within the ring; and intermediate values for intermediate cases. The sectors considered in this case were retail,

<sup>1</sup> The equation used to calculate job-population balance was:

 $\sum_{i=0}^{i=n} (1 - (ABS(J_i - JP * P_i))/(J_i + JP * P_i)) * ((BJ_i + BP_i)/(TJ + TP))$ 

where:

i = census tract number (excluding those with fewer than 100 persons per square mile)

n = number of census tracts in the county

- J = jobs in the census tract
- P = residents in the census tract

JP = jobs per person in the metropolitan area

- TJ = total jobs in the county
- TP = total residents in the county

<sup>2</sup> The equation for this measure is:

$$\sum_{i=1}^{n} \sum_{j} ((P_{j} * LN(P_{j})) / LN(j)) * ((BJ_{i} + BP_{i}) / (TJ + TP))$$

where:

- i = census tract number (excluding those with fewer than 100 persons per square mile)
- n = number of census tracts in the county

j = number of sectors

P<sub>j</sub> = proportion of jobs in sector j

JP = jobs per person in the metropolitan area

TJ = total jobs in the county

TP = total residents in the county

entertainment, health, education, and personal services. Values were weighted by the sum of block group population and employment as a percentage of the county total to obtain:

• countywide degree of job mixing (jobmix).

A third mixed-use variable uses data from Walk Score, Inc. to measure proximity to amenities, with different amenities weighted differently and amenities discounted as the distance to them increases up to one mile and a half, where they are assumed to be no longer accessible on foot.<sup>3</sup> Classic Walk Score data were acquired for all urban census tracts in the United States. Year 2012 data were purchased to reduce the cost of data acquisition. Values were weighted by the sum of block group population and employment as a percentage of the county total to obtain:

• countywide average Walk Score (walkscore)

Principal components were extracted from the three mix-related variables, and the principal component that accounted for the greatest variance became the mix factor. Loadings of these variables on the mix factor are shown in Table 2.2. The eigenvalue of the mix factor is 2.30, which means that this one factor accounts for more than two-thirds of the total variance.

| Observed variable  | Factor loading* |
|--------------------|-----------------|
| jobpop             | 0.891           |
| jobmix             | 0.942           |
| walkscore          | 0.784           |
| Eigenvalue         | 2.30            |
| Explained variance | 76.6%           |

\* Correlation with the mix use factor

## Centering

Urban centers are concentrations of activity that provide agglomeration economies, support alternative modes and multipurpose trip making, create a sense of place in the urban landscape, and otherwise differentiate compact urban areas from sprawling ones. Centeredness can exist with respect to population or employment, and with respect to a single dominant center or multiple subcenters. The technical literature associates compactness with centers of all types, and sprawl with the absence of centers of any type.

Ewing et al. (2002) measured metropolitan centering, in part, in terms of concentrations of development in or around historic central business districts (CBDs) of metropolitan areas. This concept of centering does not make much sense when applied to the individual counties that make up a metropolitan area, only one of which can contain the historic central business district. Other counties have their own subcenters in the polycentric metropolitan areas of today, and the existence of and proximity to these

<sup>&</sup>lt;sup>3</sup> A grocery store, for example, gets three times the weight of a book score. The distance decay function starts with a value of 100 and decays to 75 percent at a half mile, 12.5 percent at one mile, and zero at 1.5 miles.

are what distinguish counties with concentrations of activity from those without. Four measures of centering were derived for metropolitan counties:

The first centering measure came straight out of the 2010 census:

 coefficient of variation in census block group population densities, defined as the standard deviation of block group densities divided by the average density of block groups. The more variation in densities around the mean, the more centering and/or subcentering exists within the county (varpop)

The second centering measure was derived from the LED database and is analogous to the first measure, except for its use of employment density by block group rather than population density to compute:

 coefficient of variation in census block group employment densities, defined as the standard deviation of block group densities divided by the average density of block groups. The more variation in densities around the mean, the more centering and/or subcentering exists within the county (varemp)

The last two centering variables measure the proportion of employment and population within CBDs and employment sub-centers. We first identified the location of CBDs and employment sub-centers for all metropolitan areas. For identifying CBDs, we ran a local spatial autocorrelation procedure using the local Moran's I statistic (Anselin, 1995).<sup>4</sup> With this procedure, it is possible to quantify the degree of clustering of neighboring zones with high levels of density. This method has been used by Baumont & Le Gallo (2003) and Riguelle et al. (2007).

<sup>4</sup> Local Moran's I is defined as:

$$I_i = \frac{(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2 / n} \sum_{j=1}^n w_{ij} (x_j - \bar{x})$$

where  $I_i$  is the local Moran's I coefficient, X is the value of the employment density,  $w_{ij}$  is the matrix of spatial weights, and n is the number of observations. Through calculating z-values of the local Moran statistic (see Anselin, 1995; Getis and Ord, 1996) it is then possible to identify two types of spatial clusters, two types of outliers :

- High-high High values around neighbors with high values (cluster)
- Low-low Low values around neighbors with low values (cluster)
- High-low High values around neighbors with low values (outlier)
- Low-high Low values around neighbors with high values (outlier)

Using LED data of block groups, the Moran's I analysis was done for all Metropolitan areas. The High-High clusters with the highest employment density in each metropolitan statistical area (MSA) were considered as CBD candidates. However not all of them are CBDs. We excluded the hot spots containing large firms such as hospitals, malls and university campuses by applying the threshold of having employment share of no more than 75 percent in each sector. We identified CBD for a total of 356 Metropolitan areas.

Having CBDs for 356 metropolitan areas, we identified employment sub-centers as the positive residuals estimated from an exponential employment density function using Geographically Weighted Regression method (GWR).<sup>5</sup> In the literature, urban sub-centers are areas with significantly higher employment density than the surrounding areas (McDonald 1987). To identify sub-centers, researchers have used several types of procedures: a minimum density procedure (Giuliano and Small 1991), identification of local peaks (Craig & Ng, 2001), and a nonparametric method (McMillen 2004). The last of these methods works best, according to literature review by Lee (2007). Using this procedure, we found 224 metropolitan areas to be monocentric (have only one center), 132 to be polycentric (have more than one center), and 18 metropolitan areas to be dispersed (have no CBD and no sub-center). This procedure resulted in two new centering variables. These findings were validated by inspecting Google Earth satellite images to identify concentrations of activity, and see whether they corresponded to our findings with GWR.

- Percentage of county population in CBD or sub-centers (popcen)
- Percentage of county employment in CBD or sub-centers (empcen)

Principal components were extracted from the set of centering variables, and the principal component that accounted for the greatest variance became our centering factor. All component variables loaded positively on the centering factor (see table 2.3). The eigenvalue of the centering factor is 1.96, which means that this one factor accounts for just under half of the total variance in the data set.

| Observed variable  | Factor loading* |
|--------------------|-----------------|
| varpop             | 0.085           |
| varemp             | 0.642           |
| popcen             | 0.820           |
| empcen             | 0.932           |
| Eigenvalue         | 1.96            |
| Explained variance | 49.1%           |

Table 2.3. Variable Loadings on the County Centering Factor for 2010

\* Correlation with the centering factor

<sup>&</sup>lt;sup>5</sup> GWR estimates a smoothed employment density surface using only nearby observations for any data point (block groups), with more weights given to closer observations. The dependent variable of the GWR estimations is employment density by block groups and the independent variable is the distance of the block group centroid from the CBD. We used the Adaptive kernel type with 30 numbers of neighbors. The block groups with highest positive residual (if residual is 4 times greater than predicted) are candidates for employment sub-centers. As with CBD identification, we excluded the block groups containing large firms such as hospitals, regional malls, and university campuses by applying the requirement that the employment to population was less than 2.5 (Gordon et al 1986). We identified a total of 451 sub-centers in 132 metropolitan areas.

## **Street Accessibility**

In the refined sprawl indices, two street variables are the same as in the original county sprawl index: average block size excluding rural blocks of more than one square mile (avgblk) and percentage of small urban blocks of less than one hundredth of a square mile (smlblk). To these two street accessibility variables were added. The two new street variables are:

- intersection density for urban and suburban census tracts within the county, excluding rural tracts with gross densities of less than 100 persons per square mile (intden)
- percentage of 4-or-more-way intersections, again excluding rural tracts (4-way)

Intersection density captures both block length and street connectivity. Percentage of 4-or-more-way intersections provides a pure measure of street connectivity, as 4-way intersections provide more routing options than 3-way intersections.

Starting with a 2006 national dataset of street centerlines generated by TomTom that ships with ArcGIS, we produced a national database of street intersection locations, including for each intersection feature a count of streets that meet there. The TomTom dataset includes one centerline feature for each road segment running between neighboring intersections; i.e. every intersection is the spatially coincident endpoint of 3 or more road segments.<sup>6</sup>

The resulting national intersection database contains 13.1 million features; 77% of these are three-way intersections, and the remaining 23% are four- or more-way intersections. Total counts of 3- and 4-or-more-way intersections were tabulated for census tracts, and census tracts were aggregated to obtain county-level data. For each county, the total number of intersections in urban and suburban tracts was divided by the land area to obtain intersection density (intden), while the number of 4-or-more-way intersections was multiplied by 100 and divided by the total number of intersections to obtain the percentage of 4-or-more way intersections (4way).

<sup>&</sup>lt;sup>6</sup> Intersection features were created as follows: Using Census Feature Class Code (CFCC) values, we filtered out all freeways, unpaved tracks, and other roadways that don't function as pedestrian routes. Divided roadways, which from a pedestrian mobility perspective function similarly to undivided roadways of the same functional class, were represented in the source data as pairs of (roughly) parallel centerline segments. These were identified by CFCC value and merged into single segments using GIS tools. Streets intersecting the original divided roadways were trimmed or extended to the new merged centerlines, and the new merged centerlines were split at each intersection with side streets such that centerline features only intersect each other at feature endpoints. Roundabouts were assumed to function similarly to single 4+-way intersections, rather than close-set clusters of intersections joining the roundabout proper and the incoming streets. As such, centroids of roundabout circles were located and assigned an assumed count of four incoming streets; endpoints of incoming street features were ignored.

With the corrected street centerline data prepared, we generated point features at both endpoints of each street segment. Points closer together than 12m were adjusted to be spatially coincident in order to control for any possible remaining geometric errors related to divided roadways. We then used GIS tools to count the number of points (representing ends of street segments) coinciding at any location. Locations with point counts of one (dead ends) or two (locations where a roadway changes name, functional class, or other attribute) were discarded as non-street intersections. Remaining locations were flagged with attributes indicating whether a point was a three-way or a four- or more-way intersection.

Principal components were extracted from the full set of street-related variables, and the principal component that accounted for the greatest variance became our street accessibility factor. Loadings of these variables on the street factor are shown in Table 2.4. The eigenvalue of the street factor is 2.39, which means that this one factor accounts for more than half of the total variance in the data set. As expected, one of the variables loads negatively on the street accessibility factor, that being the average block size. The rest load positively. Thus, for all component variables, more accessibility translates into higher values of the street factor.

Table 2.4. Variable Loadings on the County Street Factor for 2010

| Observed variable  | Factor loading* |
|--------------------|-----------------|
| avgblk             | -0.764          |
| smlblk             | 0.901           |
| inden              | 0.836           |
| 4-way              | 0.545           |
| Eigenvalue         | 2.39            |
| Explained variance | 59.8%           |

\* Correlation with the street factor

## **Relationship Among Compactness Factors**

It has been said that measures of the built environment are so highly correlated that they should not be represented separately, but instead should be combined into a single index. Thus, for example, overall measures of walkability have been advanced as an alternative to individual measures.

This position is not borne out by this study, at least not at the county level. While correlated, as one might expect, the four compactness factors seem to represent distinct constructs. Their simple correlation coefficients are shown in Table 2.5. The highest is 0.647, which means that each factor explains less than 42 percent of the variation in the other.

|                  | density factor | mix factor | centering factor | street factor |
|------------------|----------------|------------|------------------|---------------|
| density factor   | 1              | 0.399**    | 0.523**          | 0.583**       |
| mix factor       | 0.399**        | 1          | 0.421**          | 0.647**       |
| centering factor | 0.523**        | 0.421**    | 1                | 0.438**       |
| street factor    | 0.583**        | 0.647**    | 0.438**          | 1             |

Table 2.5. Simple Pearson Correlation between four factors

## **Composite Index**

The next issue we had to wrestle with was how to combine the four factors into a single sprawl index. A priori, there is no "right" way to do so, only ways that have more or less face validity.

Should the four factors be weighted equally, or should one or another be given more weight than the others? Density has certainly received more attention as an aspect of sprawl than has, say, street accessibility. However, beyond play in the literature, we could think of no rationale for differential weights. The first three factors all contribute to the accessibility or inaccessibility of different

development patterns, none presumptively more than the others. Depending on their values, all move a county along the continuum from sprawl to compact development to sprawl. Thus they were simply summed, in effect giving each dimension of sprawl equal weight in the overall index.

As with the individual sprawl factors, we transformed the overall compactness score into an index with a mean of 100 and a standard deviation of 25. This was done for the sake of consistency and ease of understanding. With this transformation, the more compact counties have index values above 100, while the more sprawling have values below 100.

Appendix B contains compactness factors and refined county sprawl (compactness) indices for 967 county and county equivalents in 2010. Note that Massachusetts counties are missing from the mix factor and overall index for lack of LED data. The ten most compact and ten most sprawling counties are shown in Tables 3.6 and 3.7. The rankings are similar to those with the original county sprawl index. The most compact counties are central counties of large, older metropolitan areas. The most sprawling counties of large metropolitan areas, or component counties of smaller metropolitan areas. Values range from 42 for Oglethorpe County, GA outside Athens, the most sprawling county in 2010.

Looking at Tables 1.2 and 2.6, it would seem that the original and new compactness indices are measuring the same construct, but that is not quite true. Just compare Tables 1.3 and 2.7, where there is no overlap in the most sprawling counties according to the two indices. The original compactness index is dominated by density variables (four of six variables in the index) and only slightly diluted by street variables (two of the six), which correlate strongly with density. The new compactness index dilutes the role of density by adding two new factors (mix and centering). The simple correlation coefficient between original and new indices is 0.865, which means that about 25 percent of the variance in each index is unexplained by the other. We would expect that they have similar but not identical relationships to outcome variables, and similar but not identical predictive power.

|    | County                   | Metropolitan Area                                  | Index |
|----|--------------------------|----------------------------------------------------|-------|
| 1  | New York County, NY      | New York-Northern New Jersey-Long Island, NY-NJ-PA | 425.2 |
| 2  | Kings County, NY         | New York-Northern New Jersey-Long Island, NY-NJ-PA | 265.2 |
| 3  | San Francisco County, CA | San Francisco-Oakland-Fremont, CA                  | 251.3 |
| 4  | Bronx County, NY         | New York-Northern New Jersey-Long Island, NY-NJ-PA | 224.0 |
| 5  | Philadelphia County, PA  | Philadelphia-Camden-Wilmington, PA-NJ-DE-MD        | 207.2 |
| 6  | District of Columbia, DC | Washington-Arlington-Alexandria, DC-VA-MD-WV       | 206.4 |
| 7  | Queens County, NY        | New York-Northern New Jersey-Long Island, NY-NJ-PA | 204.2 |
| 8  | Baltimore city, MD       | Baltimore-Towson, MD                               | 190.9 |
| 9  | Norfolk city, VA         | Virginia Beach-Norfolk-Newport News, VA-NC         | 179.6 |
| 10 | Hudson County, NJ        | New York-Northern New Jersey-Long Island, NY-NJ-PA | 178.7 |

Table 2.6. 10 Most Compact Counties in 2010 According to the Four-Factor Index (excluding Massachusetts counties)

Table 2.7. 10 Most Sprawling Counties in 2010 According to the Four-Factor Index (excluding Massachusetts counties)

|     | County                | Metropolitan Area                          | Index |
|-----|-----------------------|--------------------------------------------|-------|
| 960 | Spencer County, KY    | Louisville/Jefferson County, KY-IN         | 60.4  |
| 961 | Morrow County, OH     | Columbus, OH                               | 58.8  |
| 962 | Brown County, IN      | Indianapolis-Carmel, IN                    | 58.5  |
| 963 | Blount County, AL     | Birmingham-Hoover, AL                      | 56.6  |
| 964 | Greene County, NC     | Greenville, NC                             | 56.6  |
| 965 | Harris County, GA     | Columbus, GA-AL                            | 55.1  |
| 967 | Macon County, TN      | Nashville-DavidsonMurfreesboroFranklin, TN | 54.3  |
| 966 | Elbert County, CO     | Denver-Aurora-Broomfield, CO               | 54.3  |
| 968 | Grant Parish, LA      | Alexandria, LA                             | 53.8  |
| 969 | Oglethorpe County, GA | Athens-Clarke County, GA                   | 45.5  |

## **Greater Validity of New Index**

Compared to the original county compactness index, the new four-factor index has greater construct and face validity. It has greater construct validity because it captures four different dimensions of the construct "compactness" (density, mix, centering, and street accessibility), whereas the original index captures only two dimensions (density and street accessibility).

The greater face validity of the new four-factor index requires some explanation. The very first county compactness indices were derived for only 448 counties in the largest 101 metropolitan areas. The most sprawling counties, such as Geauga County outside Cleveland, have classic sprawl patterns of low-density suburban development.

Expanding to 994 counties and adding smaller metropolitan areas, the picture becomes more complicated. Tables 1.2 and 2.8 list the most compact counties as measured by both indices. The ten most compact counties based on the original index largely overlap with the top ten based on the new index (with the notable exception of Suffolk County (Boston), for which we don't have all required variables). New York County (Manhattan) is the most compact according to both indices (see Figure 2.1). Kings County (Brooklyn) is the second most compact according to both indices (see Figure 2.2).

Figure 2.1. Most Compact County According to Both Indices (New York County, NY)



Figure 2.2. Second Most Compact County According to Both Indices (Kings County, NY)



However, the ten most sprawling counties are entirely different when measured by different indices (see Tables 1.3 and 2.9). Which index has greater face validity? We reviewed satellite imagery for the ten most sprawling counties, according to both indices, and found that the development patterns for the new index are much more representative of classic suburban sprawl (see Tables 2.8 and 2.9). While all 20 counties are part of metropolitan areas, many of the counties rated as most sprawling according to the original index have different development patterns than expected. They would best be described as exurban counties with small towns surrounded by farmlands (see Figures 2.3 and 2.4). The small towns have moderate densities and gridded streets. The fact they are part of larger census tracts, our

units of analysis, depresses their densities and compactness scores. They are not examples of classic suburban or exurban sprawl. On the other hand, the counties rated as most sprawling according to the new four-factor index have census tracts with very low-density residential development.

|                    | Development Pattern                                        | Index |
|--------------------|------------------------------------------------------------|-------|
| Ford County, IL    | Ford County, IL Small town surrounded by rural development |       |
| Osage County, KS   | Small town surrounded by rural development                 | 66.9  |
| Jasper County, IN  | Continuous low density suburban development                | 66.8  |
| Grant County, AR   | Continuous low density suburban development                | 66.8  |
| Tipton County, IN  | Small town surrounded by rural development                 | 66.4  |
| Chester County, TN | Continuous low density suburban development                | 65.4  |
| Morrow County, OH  | Continuous low density suburban development                | 63.4  |
| Greene County, NC  | Continuous low density suburban development                | 63.3  |
| Polk County, MN    | Small town surrounded by rural development                 | 61.1  |
| Jackson County, KS | Small town surrounded by rural development                 | 54.6  |

Table 2.8. 10 Most Sprawling Counties in 2010 According to the Six-Variable Index

Table 2.9. 10 Most Sprawling Counties in 2010 According to the Four-Factor Index (excluding Massachusetts counties)

| County                | Metropolitan Area                          | Index |
|-----------------------|--------------------------------------------|-------|
| Spencer County, KY    | Louisville/Jefferson County, KY-IN         | 60.4  |
| Morrow County, OH     | Columbus, OH                               | 58.8  |
| Brown County, IN      | Indianapolis-Carmel, IN                    | 58.5  |
| Blount County, AL     | Birmingham-Hoover, AL                      | 56.6  |
| Greene County, NC     | Greenville, NC                             | 56.6  |
| Harris County, GA     | Columbus, GA-AL                            | 55.1  |
| Macon County, TN      | Nashville-DavidsonMurfreesboroFranklin, TN | 54.3  |
| Elbert County, CO     | Denver-Aurora-Broomfield, CO               | 54.3  |
| Grant Parish, LA      | Alexandria, LA                             | 53.8  |
| Oglethorpe County, GA | Athens-Clarke County, GA                   | 45.5  |

Figure 2.3. Most Sprawling County According to Six-Variable Index (Jackson County, KS)



Figure 2.4. Second Most Sprawling County According to Six-Variable Index (Polk County, MN)



Figure 2.5. Most Sprawling County According to Four-Factor Index (Oglethorpe County, GA)



Figure 2.6. Second Most Sprawling County According to Four-Factor Index (Grant Parish, LA)



## **Chapter 3. Derivation of Metropolitan Sprawl Indices**

Sprawl is ordinarily conceptualized at the metropolitan level, encompassing cities and their suburbs. When we say Atlanta sprawls badly, we are probably referring to metropolitan Atlanta, not the city of Atlanta or Fulton County. The focus up to this point in the report has been on counties, because counties are typically smaller than metropolitan areas and more homogeneous than metropolitan areas. They more closely correspond to the environment in which individuals live, work, and play on a daily basis, and hence are affected by the built environment. But certain phenomena are manifested at the regional or metropolitan level, such as ozone levels and racial segregation. So in this chapter we derive metropolitan sprawl indices.

#### **Methods**

#### Sample

The unit of analysis in this study is the metropolitan area. A metropolitan area is a region that consists of a densely populated urban core and its less-populated surrounding territories that are economically and socially linked to it. The criteria of defining metropolitan areas changed in 2003. Smaller MSAs remained the same, but larger metropolitan areas, previously referred to as consolidated metropolitan statistical areas (CMSAs) are now defined as MSAs. Different portions of CMSAs, previously referred to as primary metropolitan statistical areas (PMSAs), have been redefined and reconfigured as metropolitan divisions. For example, the old New York CMSA consisted of eleven counties in two states and four PMSAs: New York PMSA, Nassau-Suffolk PMSA, Dutchess County PMSA and Newburgh, NY-PA PMSA. The current New York MSA consists of twenty-three counties in three states and four metropolitan divisions. The New York MSA now is strikingly heterogeneous, whereas the old New York PMSA contained only the five boroughs that make up New York City. Metropolitan divisions do not perfectly substitute for PMSAs, as they have different size thresholds (2.5 million vs. 1 million population), but they come as close to representing homogenous units as we can come with current census geography. Metropolitan divisions are designated for each of the eleven largest MSAs.<sup>7</sup>

The sample in this study is limited to medium and large metropolitan areas, and metropolitan divisions where they are defined. It initially included a total of 228 areas with more than 200,000 population in 2010. The rationale for thus limiting our sample is simple: the concept of sprawl has particular relevance to large areas where the economic, social, and environmental consequences of sprawl can be significant. The concept of sprawl does not have much relevance to small MSAs such as Lewiston, ID and Casper, WY.

Parenthetically, a total of seven metropolitan areas and divisions were ultimately dropped from our sample due to the lack of local employment dynamics (LED) data, a key data source for measuring sprawl. These metropolitan areas, or a portion of them, are located in Massachusetts, which does not participate in the LED program. This reduces the final sample size to 221 MSAs and metropolitan divisions.

<sup>&</sup>lt;sup>7</sup> The metropolitan divisions, as components of MSAs, somewhat resemble PMSAs under the old system. However, PMSAs were much more common. The higher population threshold for establishing metropolitan divisions (at least 2.5 million), opposed to the threshold of at least 1 million to establish PMSAs, means that the new system contains twenty-nine metropolitan divisions within eleven MSAs, compared to seventy-three PMSAs within eighteen CMSAs under the old system.

#### Variables

#### **Development Density**

Our first five density variables are the same as in the original sprawl index (Ewing et al., 2002): gross density of urban and suburban census tracts (popden), percentage of the population living at low suburban densities (lt1500), percentage of the population living at medium to high urban densities (gt12500), and urban density based on the National Land Cover Database (urbden). These variables are measured the same way for metropolitan areas as for counties (see Chapter 2).

A fifth variable is the estimated density at the center of the metropolitan area derived from a negative exponential density function (dgcent). The function assumes the form:

Di = Do exp (-b di).

where:

Di = the density of census tract i
Do = the estimated density at the center of the metropolitan area
b = the estimated density gradient or rate of decline of density with distance
di = the distance of the census tract from the center of the principal city

The higher the central density, and the steeper the density function, the more compact the metropolitan area (in a monocentric sense).<sup>8</sup>

The sixth density variable, which is new, is analogous to the first, except it is derived with employment data from the Local Employment Dynamics (LED) database (empden). The LED data were aggregated from census block geography to generate total jobs by 2-digit NAICS code for every block group in the nation. This was then divided by land area to produce a density measure.

The last two variables are related to employment centers identified by the authors as a part of this study. For more information on how the centers were identified for MSAs see "Activity Centering" in Chapter 3.The two variables are weighted average population density (popdcen) and weighted average employment density (empdcen) of all centers within a metropolitan area. The average densities were weighted by the sum of block group jobs and residents as a percentage of the MSA total.

#### Land Use Mix

The two mixed-use variables were calculated for each block group's buffer using block-level population data from the 2010 Census, and block-level employment data from the 2010 LED database. The first variable is a job-population balance measure (jobpop). This variable equals 1 for block groups with the same ratio of jobs-to-residents within the one-mile ring as the metropolitan area as a whole; 0 for block groups with only jobs or residents within the one-mile ring, not both; and intermediate values for

<sup>&</sup>lt;sup>8</sup> The function was estimated as follows. The principal cities of the metro areas were identified as the first-named cities in the 1990 definitions of those areas. Their centers were determined by locating central business district tracts within the principal cities as specified in the 1980 STF3 file. 1980 designations were adopted because central business districts have not been designated since then. The means of the latitudes and longitudes of the centroids of those central business district tracts were taken as the metropolitan centers. The distances from the centers to all tracts were calculated using an ArcGIS. Finally, a negative exponential density function was fit to the resulting data points to estimate the intercept and density gradient.

intermediate cases. All values were weighted by the sum of block group jobs and residents as a percentage of the MSA total.  $^{\rm 9}$ 

We also derived a job mix variable (jobmix). The variable, an entropy measure, equals 1 for block groups with equal numbers of jobs in each sector; 0 for block groups with all jobs in a single sector within the ring; and intermediate values for intermediate cases. The sectors considered in this case were retail, entertainment, health, education, and personal services. Values were weighted by the sum of block group population and employment as a percentage of the MSA total.

A third mixed-use variable is metropolitan weighted average Walk Score (walkscore). It was computed using data from Walk Score, Inc. to measure proximity to amenities, with different amenities weighted differently and amenities discounted as the distance to them increases up to one mile and a half, where they are assumed to be no longer accessible on foot.<sup>10</sup> Classic Walk Score data were acquired for all urban census tracts in the United States. Values were weighted by the sum of census tract population and employment as a percentage of the MSA total.

#### **Activity Centering**

The first centering variable came straight out of Ewing et al. (2002) and the 2010 census. It is the coefficient of variation in census block group population densities, defined as the standard deviation of block group densities divided by the average density of block groups (varpop). The more variation in population densities around the mean, the more centering and/or subcentering exists within the MSA. The second centering variable is analogous to the first, except it is derived with employment data from the LED database. It is the coefficient of variation in census block group employment densities, defined as the standard deviation of block group densities divided by the average density of block groups (varemp). The more variation in employment densities around the mean, the more centering and/or subcentering exists within the MSAs.

The third variable contributing to the centering factor is the density gradient moving outward from the CBD, estimated with a negative exponential density function. The faster density declines with distance from the center, the more centered (in a monocentric sense) the metropolitan area will be (dgrad).

The next two centering variables measure the proportion of employment and population within CBDs and employment sub-centers. For computing them, we first identified the location of CBDs and employment sub-centers for all metropolitan areas (see "Activity Centering" section on Chapter 3). This procedure resulted in two new centering variables as the percentage of MSA population (popcen) and employment (empcen) in CBDs and sub-centers.

#### Street Accessibility

Street accessibility is related to block size since smaller blocks translate into shorter and more direct routes. Large block sizes indicate a lack of street connections and alternate routes. So, three street accessibility variables were computed for each MSA based on blocks size: average block length (avgblklngh), average block size (avgblksze) and the percentage of blocks that are less than 1/100 square mile, which is the typical size of an urban block (smlblk).

<sup>&</sup>lt;sup>9</sup> See "land use mix" section for the formula used for computing job-population balance and job mix measures.

<sup>&</sup>lt;sup>10</sup> A grocery store, for example, gets three times the weight of a book score. The distance decay function starts with a value of 100 and decays to 75 percent at a half mile, 12.5 percent at one mile, and zero at 1.5 miles.

These three variables were part of Ewing et al.'s original sprawl metrics. To them, we have added two new variables. They are intersection density and percentage of 4-or-more way intersections. Intersections are where street connections are made and cars must stop to allow pedestrians to cross. The higher the intersection density, the more walkable the city (Jacobs, 1993). Intersection density has become the most common metric in studies of built environmental impacts on individual travel behavior (Ewing and Cervero, 2010).

Another common metric in such studies is the percentage of 4-or-more-way intersections (Ewing and Cervero, 2010). This metric provides the purest measure of street connectivity, as 4-way intersections provide more routing options than 3-way intersections. A high percentage of 4-way intersections does not guarantee walkability, as streets may connect at 4-way intersections in a super grid of arterials. But it does guarantee routing options.

For each MSA, the total number of intersections in the urbanized portion of MSA was divided by the land area to obtain intersection density (intden), while the number of 4-or-more-way intersections was multiplied by 100 and divided by the total number of intersections to obtain the percentage of 4-or-more way intersections (4way).

#### **Results**

#### Individual Compactness/Sprawl Factors

For each dimension of sprawl, we ran principal component analysis on the measured variables, and the principal component that captured the largest share of common variance among the measured variables was selected to represent that dimension. Factor loadings (the correlation between a variable and a principal component), eigenvalues (the explanatory power of a single principal component), and percentages of explained variance are shown in Table 3.1.

The eigenvalue of the density factor is 5.82, which indicates that this one factor accounts for about three quarters of the total variance in the dataset. As anticipated, the percentage of the population living at less than 1,500 persons per square mile loads negatively on the density factor. The rest load positively.

The eigenvalue for the mix factor is 2.30, which indicates that this one factor accounts for more than three quarter of the total variance in the dataset. All component variables load positively on the mix factor.

The eigenvalue of the centering factor is 1.90, which indicates that this factor accounts for about 38% of the total variance in the datasets. The density gradient loads negatively on centering factor as expected. The rest load positively.

The eigenvalue of the street factor is 2.51, which indicates that this factor accounts for more than a half of the total variance in the dataset. As expected, the average block size and average block length load negatively on the street accessibility factor. The rest load positively.

Table 3.1: Variable Loadings of Four Factors for 2010

|                     | Component Matrix                                                                                       | Data Sources               | Factor<br>Loadings   |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------|----------------------------|----------------------|--|--|
| Density Fac         | tor                                                                                                    |                            |                      |  |  |
| popden              | gross population density                                                                               | Census 2010                | 0.900                |  |  |
| empden              | gross employment density                                                                               | LED 2010                   | 0.898                |  |  |
| lt1500              | percentage of the population living at low suburban densities                                          | Census 2010                | -0.597               |  |  |
| gt12500             | percentage of the population living at medium to high<br>urban densities                               | Census 2010                | 0.879                |  |  |
| urbden              | net population density of urban lands                                                                  | NLCD                       | 0.925                |  |  |
| dgcent              | estimated density at the center of the metro area derived from a negative exponential density function | Census 2010,<br>Tiger 2010 | 0.948                |  |  |
| popdcen             | weighted average population density of centers                                                         | Census 2010                | 0.810                |  |  |
| empdcen             | weighted average employment density of centers                                                         | LED 2010                   | 0.817                |  |  |
| Eigenvalue          |                                                                                                        |                            | 5.82                 |  |  |
| Explained v         | ariance                                                                                                |                            | 72.80%               |  |  |
| Mix use Fact        | or                                                                                                     |                            | 1                    |  |  |
| jobpop              | job-population balance                                                                                 | LED 2010                   | 0.834                |  |  |
| jobmix              | degree of job mixing (entropy)                                                                         | LED 2010                   | 0.921                |  |  |
| walkscore           | weighted average Walk Score                                                                            | Walk Score Inc.            | 0.870                |  |  |
| Eigenvalue          |                                                                                                        |                            | 2.30                 |  |  |
| Explained v         | ariance                                                                                                |                            | 76.72%               |  |  |
| <b>Centering Fa</b> | octor                                                                                                  |                            |                      |  |  |
| varpop              | coefficient of variation in census block group<br>population densities                                 | Census 2010                | 0.495                |  |  |
| varemp              | coefficient of variation in census block group employment densities                                    | LED 2010                   | 0.313                |  |  |
| dgrad               | density gradient moving outward from the CBD                                                           | Census 2010,<br>Tiger 2010 | -0.375               |  |  |
| popcen              | percentage of MSA population in CBD or sub-centers                                                     | Census 2010                | 0.833                |  |  |
| empcen              | percentage of MSA employment in CBD or sub-centers                                                     | LED 2010                   | 0.847                |  |  |
| Eigenvalue          |                                                                                                        |                            | 1.90                 |  |  |
| Explained v         |                                                                                                        |                            | 37.89%               |  |  |
| Street Facto        |                                                                                                        |                            |                      |  |  |
| smlblk              | percentage of small urban blocks                                                                       | Census 2010                | 0.871                |  |  |
| avgblksze           | average block size                                                                                     | Census 2010                | -0.804               |  |  |
| avgblking           | average block length                                                                                   | NAVTEQ 2012                | -0.649               |  |  |
| intden              | intersection density                                                                                   | TomTom 2007                | 0.729                |  |  |
| 4way                | percentage of 4-or-more-way intersections                                                              | TomTom 2007                | 0.380<br><b>2.51</b> |  |  |
| Eigenvalue          |                                                                                                        |                            |                      |  |  |
| Explained variance  |                                                                                                        |                            |                      |  |  |

#### **Overall Compactness/Sprawl Index for 2010**

Although density has received more attention as a dimension of sprawl than have other factors, similar to Ewing et al. (2002) we could think of no rationale for giving different weights to the four factors. All four factors affect the accessibility or inaccessibility of development patterns. Each factor can move a MSA along the continuum from sprawl to compact development. Thus the four were simply summed, in effect giving each dimension of sprawl equal weight in the overall index.

The second and more difficult issue was whether to, and how to, adjust the resulting sprawl index for MSA size. As areas grow, so do their labor and real estate markets, and their land prices. Their density gradients accordingly shift upward, and other measures of compactness (intersection density, for example) follow suit. The simple correlation between the sum of the four sprawl factors and the population of the MSA is 0.575, significant at .001 probability level. Thus, the largest urbanized areas, perceived as the most sprawling by the public, actually appear less sprawling than smaller urbanized areas when sprawl is measured strictly in terms of the four factors, with no consideration given to area size.

We used the same methodology as Ewing et al (2002) to account for metropolitan area size. We regressed the sum of the four sprawl factors on the natural logarithm of the population of the MSAs. The standardized residuals became the overall measure of sprawl. As such, this index is uncorrelated with population. However, the overall index still has a high correlation (r=0.866) with the sum of four factors before adjustment.

We transformed the overall sprawl index into a metric with a mean of 100 and a standard deviation of 25 for ease of use and understanding. More compact metropolitans have index values above 100, while the more sprawling have values below 100. Table 3.2 presents overall compactness scores and individual component scores for the 10 most compact and the 10 most sprawling large metropolitan areas. By these metrics, New York and San Francisco are the most compact large metropolitan divisions (see Figures 3.1a&b), while Hickory, NC and Atlanta, GA are the most sprawling metropolitan areas (see Figure 3.2a&b). These figures are at the same scale, and is clear that the urban footprints of the former are more concentrated than those of the latter. Again all metropolitan areas and divisions in Massachusetts, including the Boston metropolitan division, are not in the list due to the lack of available employment data (LED) for this state.

| Rank  |                                                            | index | denfac | mixfac | cenfac | strfac |
|-------|------------------------------------------------------------|-------|--------|--------|--------|--------|
| Ten N | Ten Most Compact Metropolitan Areas                        |       |        |        |        |        |
| 1     | New York-White Plains-Wayne, NY-NJ Metro<br>Division       | 203.4 | 384.3  | 159.3  | 213.5  | 193.8  |
| 2     | San Francisco-San Mateo-Redwood City, CA<br>Metro Division | 194.3 | 185.9  | 167.2  | 230.9  | 162.8  |
| 3     | Atlantic City-Hammonton, NJ Metro Area                     | 150.4 | 112.3  | 148.9  | 109.5  | 122.1  |
| 4     | Santa Barbara-Santa Maria-Goleta, CA Metro<br>Area         | 146.6 | 100.8  | 93.7   | 137.3  | 94.1   |
| 5     | Champaign-Urbana, IL Metro Area                            | 145.2 | 160.2  | 136.4  | 117.9  | 166.9  |
| 6     | Santa Cruz-Watsonville, CA Metro Area                      | 145.0 | 96.3   | 100.1  | 154.5  | 130.7  |

Table 3.2. Compactness/Sprawl Scores for 10 Most Compact and 10 Most Sprawling metropolitan areas and divisions in 2010

| 7     | Trenton-Ewing, NJ Metro Area                             | 144.7 | 98.9  | 146.2 | 107.9 | 112.2 |
|-------|----------------------------------------------------------|-------|-------|-------|-------|-------|
| 8     | Miami-Miami Beach-Kendall, FL Metro Division             | 144.1 | 100.0 | 123.3 | 153.6 | 82.8  |
| 9     | Springfield, IL Metro Area                               | 142.2 | 142.1 | 105.0 | 136.4 | 114.3 |
| 10    | Santa Ana-Anaheim-Irvine, CA Metro Division              | 139.9 | 104.8 | 117.8 | 96.1  | 149.9 |
| Ten I | Most Sprawling Metropolitan Areas                        |       |       |       |       |       |
| 212   | Kingsport-Bristol-Bristol, TN-VA Metro Area              | 60.0  | 85.2  | 60.7  | 88.5  | 73.9  |
| 213   | Augusta-Richmond County, GA-SC Metro Area                | 59.2  | 88.1  | 60.6  | 100.8 | 82.5  |
| 214   | Greenville-Mauldin-Easley, SC Metro Area                 | 59.0  | 91.1  | 71.7  | 72.6  | 71.8  |
| 215   | Riverside-San Bernardino-Ontario, CA Metro<br>Area       | 56.2  | 97.9  | 110.3 | 70.5  | 96.2  |
| 216   | Baton Rouge, LA Metro Area                               | 55.6  | 88.2  | 80.6  | 84.9  | 70.7  |
| 217   | Nashville-DavidsonMurfreesboroFranklin, TN<br>Metro Area | 51.7  | 91.3  | 72.0  | 69.7  | 80.4  |
| 218   | Prescott, AZ Metro Area                                  | 49.0  | 84.5  | 39.7  | 74.5  | 60.8  |
| 219   | Clarksville, TN-KY Metro Area                            | 41.5  | 86.7  | 72.9  | 81.1  | 71.4  |
| 220   | Atlanta-Sandy Springs-Marietta, GA Metro Area            | 41.0  | 97.8  | 85.5  | 89.9  | 75.9  |
| 221   | Hickory-Lenoir-Morganton, NC Metro Area                  | 24.9  | 78.6  | 40.5  | 67.0  | 56.9  |

Figure 3.1. Most Compact Metropolitan Areas (New York and San Francisco)



Figure 3.2. Most Sprawling Metropolitan Areas (Atlanta and Hickory, NC)



#### **Discussion**

This study used the same basic methodology as Ewing et al. (2002) to measure the sprawl for medium and large metropolitan areas and divisions in 2010. We also expanded the sample size from 83 metropolitan areas in Ewing et al. (2002) to the 221 MSAs in this study.

For the 76 areas that are included in both studies, the compactness rankings are generally consistent across years. The Spearman correlation between the compactness rankings in 2000 and 2010 is 0.635, significant at .001 probability level which indicates, in general, the compact areas in 2000 are found to be still compact in 2010; and the sprawling areas in 2000 are still sprawling. New York is the most compact region followed by San Francisco in both years. Atlanta is the fourth most sprawling area in 2000 and the most sprawling area in 2010. Riverside-San Bernardino-Ontario, CA is the most sprawling in 2000 and the third most sprawling area in 2010.

There are, however, metropolitan areas with significantly different ranking in 2010 than 2000. One of the surprising cases is the Las Vegas-Paradise, NV metropolitan area. Its ranking rises from the 30th most compact area in 2000 to the 16th in 2010 due to its moderate to high score in all four dimensions. This is consistent with Fulton et al. (2001) study that found Las Vegas is getting more compact. "Las Vegas led the nation with an increase in its metropolitan density of 50 percent, thus rising in the overall density rankings from 114th in 1982 to 14th in 1997" (Fulton et al. 2001, p: 7).

Refinements in operationalizing sprawl, is another reason for differences in rankings between years. Land use mix and activity centering are the two dimensions with the most significant changes. As contributors to centering, we now consider not only central business districts (CBDs) but employment sub-centers. The existence of sub-centers is what distinguishes polycentric regions from monocentric regions. The Washington DC metropolitan division is an example of polycentric region. As shown in Figure 3.3, we identified 11 sub-centers (yellow color) in the metropolitan division. Out of 76 metropolitan areas with rankings in both years, the Washington DC metropolitan division has the 27th highest score for activity centering in 2010 while it had the 41st highest score in 2000. Its overall compactness ranking rises from 52nd most compact in 2000 to 27th most compact in 2010 due to its change on the centering score.

We also standardized the unit of analysis for mix use metrics by measuring them in half mile buffers from the centroid of block groups. Out of 76 areas that are included in both years, Phoenix has the 19th highest mix factor score in 2000 while it has the 24th lowest mix score in 2010. As a result, the Phoenix metropolitan area's overall ranking drops from 18th most compact in 2000 to 14th most sprawling in 2010.

Finally, the changes in compactness score in some areas are due to changes in metropolitan boundaries. Out of 76 metropolitan areas in both samples, Detroit moved up from 14th most sprawling in 2000 to 5th most compact in 2010. The 2010 Detroit, MI metropolitan division covers only about a fifth of the area of the 2000 Detroit PMSA. The division is mostly limited to the Detroit's downtown and surroundings. The lowest density portions of Detroit PMSA are not included in 2010 metropolitan division (see Figure 3.4). In particular, Warren-Troy-Farmington Hills, MI is now its own metropolitan division, and a very sprawling one, the 20th most sprawling out of 221 metropolitan areas in 2010. Figure 3.3. Central Business District and Employment Sub-centers in Washington DC Metropolitan Division

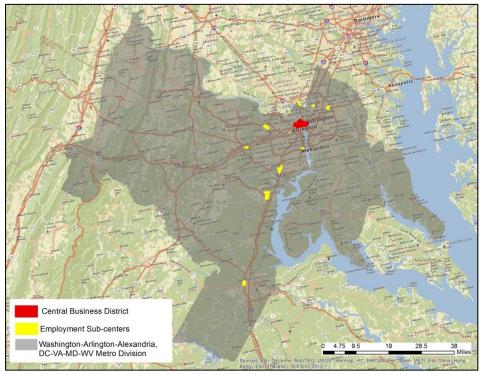
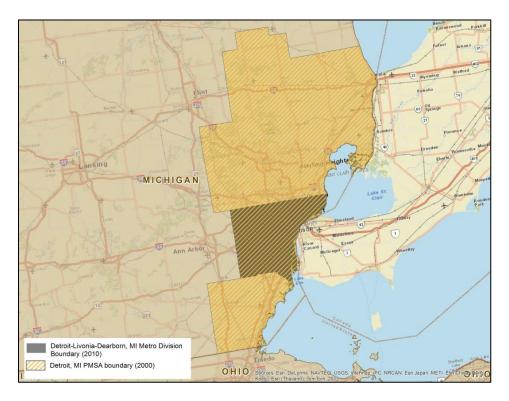




Figure 3.4. Detroit 2010 Metropolitan Division (dark) versus Detroit 2000 PMSA Boundary (light)



## **Chapter 4. Urbanized Areas: A Longitudinal Analysis**

In this chapter we seek to measure changes in sprawl by developing refined and enhanced compactness/sprawl indices for 2000 and 2010 based on definitions and procedures in Ewing et al. (2002, 2003), but refined and applied this time to urbanized areas (UZAs) rather than metropolitan areas or counties. We chose census UZAs as our units of analysis because UZAs are the only census geographies that expand systematically with urban development over time. Counties have fixed boundaries and hence tend to appear more compact over time (except when counties are losing population as in Detroit or New Orleans after Katrina). Metropolitan areas expand in large increments as entire counties, both urban and rural portions, are added to core counties to reflect changing commuting patterns and social and economic integration.

## **Methods**

#### Sample

The term "urbanized area "as defined by the U.S. Census Bureau denotes an urban area of 50,000 or more people. Urban areas are defined by core census block groups or blocks with population densities of at least 1,000 people per square mile and surrounding census blocks with densities of at least 500 people per square mile. Urbanized areas often provide a more accurate gauge of city size than do the incorporated political boundaries of cities.

This investigation is limited to large urbanized areas. Our sample consists of the 162 largest urbanized areas in the United States, those with more than 200,000 population in 2010. The rationale for thus limiting our sample is simple: the concept of sprawl has particular relevance to large areas where the economic, social, and environmental consequences of sprawl can be significant. The concept of sprawl does not have much relevance to small urbanized areas such as Pine Bluff, AR and Monroe, MI.

#### Variables

#### **Development Density**

Our first four density variables are the same as in the original sprawl index, gross density of urban and suburban census tracts (popden), percentage of the population living at low suburban densities (lt1500), percentage of the population living at medium to high urban densities (gt12500), and urban density based on the National Land Cover Database (urbden). The fifth density variable is analogous to the first, except it is derived with employment data from the Local Employment Dynamics (LED) database rather than population data (empden). In this case, LED data were processed for the years 2005 and 2010. Year 2005 is the earliest year that LED data is available for all states (except Massachusetts).

#### Land Use Mix

Although using the same variables as Ewing et al. (2002) to operationalize mixed use, we computed them differently using one-mile buffers around the centers of block groups rather than computing them within the boundaries of block groups.

The two mixed use variables were calculated for each block group's buffer using block-level population data from the 2010 Census, and block-level employment data from the 2010 LED database. The resulting job and population totals were used to compute a job-population balance measure (jobpop). This variable equals 1 for block groups with the same ratio of jobs-to-residents within the one-mile ring as the urbanized area as a whole; 0 for block groups with only jobs or residents within the one-mile ring, not both; and intermediate values for intermediate cases. All values were weighted by the sum of block group jobs and residents as a percentage of the UZA total.

For the second mixed-use variable, each block group centroid was again buffered with a one-mile ring, and jobs by sector were summed for blocks within the ring. An entropy formula was then used to compute a measure of job mix (jobmix). The variable equals 1 for block groups with equal numbers of jobs in each sector within the ring; 0 for block groups with all jobs in a single sector within the ring; and intermediate values for intermediate cases. The sectors considered in this case were retail, entertainment, health, education, and personal services. Values were weighted by the sum of block group population and employment as a percentage of the urbanized areas total. <sup>11</sup>

Unlike the mixed use factors at the county and metropolitan levels, the mixed use factor at the urbanized area level does not include a third variables, Walk Score. The reason is simple. This is longitudinal comparison of sprawl in 2000 and 2010, and Walk Score data were not available until 2007.

#### Activity Centering

The first centering variable came straight out of Ewing et al. (2002, 2003) and the 2010 census. It is the coefficient of variation in census block group population densities, defined as the standard deviation of block group densities divided by the average density of block groups (varpop). The more variation in population densities around the mean, the more centering and/or subcentering exists within the urbanized areas.

The second centering variable is analogous to the first, except it is derived with employment data from the LED database. It is the coefficient of variation in census block group employment densities, defined as the standard deviation of block group densities divided by the average density of block groups (varemp). The more variation in employment densities around the mean, the more centering and/or subcentering exists within the urbanized areas.

<sup>&</sup>lt;sup>11</sup> See "land use mix" section for the formula used for computing job-population balance and job mix measures.

The next two centering variables measure the proportion of employment and population within CBDs and employment sub-centers. We first identified the location of CBDs and employment sub-centers for all metropolitan areas (see Chapter 3). This procedure resulted in two new centering variables as the percentage of UZA population (popcen) and employment (empcen) in CBDs and sub-centers.

#### Street Accessibility

Street accessibility is related to block size since smaller blocks translate into shorter and more direct routes. Large block sizes indicate a relative paucity of street connections and alternate routes. So, two street accessibility variables were computed for each urbanized area: average block size (avgblk) and percentage of blocks with areas less than 1/100 square mile, the size of a typical traditional urban block bounded by sides just over 500 feet in length (smlblk).

These two variables were part of Ewing et al.'s original sprawl metrics. To them, we have added two new variables. They are intersection density and percentage of 4-or-more way intersections. For each UZA, the total number of intersections in the UZA was divided by the land area to obtain intersection density (intden), while the number of 4-or-more-way intersections was multiplied by 100 and divided by the total number of intersections to obtain the percentage of 4-or-more way intersections (4way).

### **Statistical Methods**

In this study we use two statistical methods. Principal component analysis (a type of factor analysis) is used to derive individual compactness indices that represent the built environments of UZAs. Then linear regression analysis is used to relate these indices to transportation outcomes, controlling for influences other than the built environment.

For each dimension of sprawl, principal components were extracted from the component variables. The principal component selected to represent the dimension was the one capturing the largest share of common variance among the component variables, that is, the one upon which the observed variables loaded most heavily. Because, in this study, the first component captured the majority of the combined variance of these variables, no subsequent components were considered.

The other statistical method used in this study is linear regression (ordinary least squares or OLS). Our dependent variables were logged so as to be normally distributed and hence properly modeled with regression analysis. As for the independent variables (control variables), we transformed all variables into log form to achieve a better fit with the data, reduce the influence of outliers, and adjust for nonlinearity of the data. The transformations have the added advantage of allowing us to interpret regression coefficients as elasticities. An elasticity is a percentage change in one variable that accompanies a one percent change in another variable. Elasticities are the most common measures of effect size in both economics and planning.

## **Results**

#### Individual Compactness/Sprawl Factors

Factor loadings (that is, correlations of these variables with each factor), eigenvalues, and percentages of explained variance are shown in Table 4.1. The eigenvalue of the density factor is 3.82, which means that this one factor accounts for more of the total variance in the datasets than three component variables combined, more than three quarters of the total variance. As expected, one of the variables loads negatively on the density factor, that being the percentage of population living at less than 1,500 persons per square mile. The rest load positively. Thus, for all component variables, higher densities translate into higher values of the density factor.

The eigenvalue of the mix factor is 1.54, which means that this one factor accounts for more than three quarters of the total variance in the dataset. Both component variables load positively on the mix factor. The eigenvalue of the centering factor is 2.20, which means that this one factor accounts for just over half of the total variance in the datasets. All component variables load positively on the centering factor. The eigenvalue of the street factor is 2.75, which means that this one factor accounts for two-thirds of the total variance in the dataset. As expected, one of the variables loads negatively on the street accessibility factor, that being the average block size. The rest load positively. Thus, for all component variables, more street accessibility translates into higher values of the street factor.

|                     | Component Matrix                                                         | Data Sources | 2010 Factor<br>Loadings |
|---------------------|--------------------------------------------------------------------------|--------------|-------------------------|
| Density Fact        | tor                                                                      |              |                         |
| popden              | gross population density                                                 | Census 2010  | 0.970                   |
| empden              | gross employment density                                                 | LED 2010     | 0.891                   |
| lt1500              | percentage of the population living at low suburban densities            | Census 2010  | -0.806                  |
| gt12500             | percentage of the population living at medium to high<br>urban densities | Census 2010  | 0.745                   |
| urbden              | net population density of urban lands                                    | NLCD         | 0.941                   |
| Eigenvalue          |                                                                          |              | 3.82                    |
| Explained v         | ariance                                                                  |              | 76.5%                   |
| Mix use Fact        | or                                                                       |              |                         |
| jobpop              | job-population balance                                                   | LED 2010     | 0.879                   |
| jobmix              | degree of job mixing (entropy)                                           | LED 2010     | 0.879                   |
| Eigenvalue          |                                                                          |              | 1.54                    |
| Explained v         | ariance                                                                  |              | 77.2%                   |
| <b>Centering Fa</b> | ctor                                                                     |              |                         |
| varpop              | coefficient of variation in census block group population densities      | Census 2010  | 0.661                   |

#### Table 4.1. Variable Loadings on Four Factors for 2010

| Explained variance |                                                                     |             |        |  |  |
|--------------------|---------------------------------------------------------------------|-------------|--------|--|--|
| Eigenvalue         |                                                                     |             |        |  |  |
| 4way               | 4way percentage of 4-or-more-way intersections TomTom 2007          |             |        |  |  |
| intden             | intersection density                                                | TomTom 2007 | 0.726  |  |  |
| avgblksze          | average block size                                                  | Census 2010 | -0.947 |  |  |
| smlblk             | percentage of small urban blocks                                    | Census 2010 | 0.844  |  |  |
| Street Facto       | r                                                                   |             |        |  |  |
| Explained v        | ariance                                                             |             | 54.8%  |  |  |
| Eigenvalue         |                                                                     |             | 2.20   |  |  |
| empcen             | percentage of UZA employment in CBD or sub-centers                  | LED 2010    | 0.790  |  |  |
| popcen             | percentage of UZA population in CBD or sub-centers                  | Census 2010 | 0.757  |  |  |
| varemp             | coefficient of variation in census block group employment densities | LED 2010    | 0.749  |  |  |
| NO KO PO P         | coefficient of variation in concus block group                      | LED 2010    | 0.749  |  |  |

#### **Overall Compactness/Sprawl Index for 2010**

Some of the technical literature on sprawl includes size in the definition. Certainly, sheer geographic size is central to popular notions of sprawl. Despite their relatively high densities, urbanized areas such as Los Angeles and Phoenix are perceived as sprawling because they "go on forever." A sprawl index that disregarded this aspect of urban form would never achieve face validity.

Accordingly, we sought a method of transforming the sum of the four sprawl factors into a sprawl index that would be neutral with respect to population size. In this study, we use the exact same procedure used with metropolitan area sprawl in the early 2000s (Ewing et al. 2002). The transformation was accomplished by regressing the sum of the four sprawl factors on the natural logarithm of the population of the urbanized area. The standardized residuals (difference between actual and estimated values divided by the standard deviation of the difference) became our overall measure of sprawl. Given the way it was derived, this index is uncorrelated with population. Urbanized areas that are more compact than expected, given their population size, have positive values. Urbanized areas that are more sprawling than expected, again given their population size, have negative values. This adjustment for population size still leaves the sprawl index highly correlated with the sum of the four component factors (r = 0.87).

As with the individual sprawl factors, we transformed the overall sprawl index (index) into a metric with a mean of 100 and a standard deviation of 25. This was done for the sake of consistency and ease of understanding. With this transformation, the more compact urbanized areas have index values above 100, while the more sprawling have values below 100. Table 4.2 presents overall compactness scores and individual component scores for the ten most compact and the ten most sprawling large urbanized areas. By these metrics, San Francisco is the most compact large urbanized area, and Atlanta is the most sprawling.

| Rank   |                                    | comfac | denfac | mixfac | cenfac | strfac |
|--------|------------------------------------|--------|--------|--------|--------|--------|
| Ten Mo | ost Compact UZAs                   |        |        |        |        |        |
| 1      | San Francisco-Oakland, CA          | 180.94 | 205.69 | 129.92 | 164.34 | 153.38 |
| 2      | Reading, PA                        | 169.32 | 127.71 | 150.87 | 124.45 | 147.46 |
| 3      | Madison, WI                        | 152.87 | 118.16 | 121.82 | 182.19 | 99.33  |
| 4      | Eugene, OR                         | 152.54 | 114.84 | 134.37 | 134.15 | 123.07 |
| 5      | Laredo, TX                         | 151.80 | 123.87 | 131.21 | 81.56  | 166.54 |
| 6      | Oxnard, CA                         | 146.19 | 147.55 | 137.14 | 82.42  | 135.08 |
| 7      | Atlantic City, NJ                  | 144.25 | 93.87  | 91.07  | 157.06 | 143.86 |
| 8      | Los Angeles-Long Beach-Anaheim, CA | 143.42 | 212.21 | 144.75 | 102.23 | 138.92 |
| 9      | Lincoln, NE                        | 143.38 | 118.63 | 127.46 | 97.02  | 141.77 |
| 10     | New York-Newark, NY-NJ-CT          | 142.71 | 197.50 | 106.80 | 179.10 | 125.06 |
| Ten Mo | ost Sprawling UZAs                 |        |        |        |        |        |
| 153    | Baton Rouge, LA                    | 64.38  | 81.92  | 75.30  | 77.21  | 77.61  |
| 154    | Fayetteville, NC                   | 61.05  | 79.40  | 73.65  | 67.16  | 64.43  |
| 155    | Chattanooga, TN-GA                 | 60.96  | 68.92  | 54.18  | 97.03  | 70.33  |
| 156    | Greenville, SC                     | 60.57  | 67.92  | 75.26  | 89.88  | 57.88  |
| 157    | Nashville-Davidson, TN             | 60.27  | 87.51  | 47.43  | 111.18 | 70.03  |
| 158    | Charlotte, NC-SC                   | 57.41  | 82.95  | 64.56  | 115.94 | 53.01  |
| 159    | Winston-Salem, NC                  | 55.56  | 66.31  | 68.97  | 88.15  | 54.29  |
| 160    | Victorville-Hesperia, CA           | 54.15  | 82.38  | 67.79  | 57.01  | 61.88  |
| 161    | Hickory, NC                        | 48.64  | 46.92  | 78.41  | 72.20  | 44.94  |
| 162    | Atlanta, GA                        | 37.45  | 84.64  | 75.63  | 107.29 | 36.84  |

Table 4.2. Compactness/Sprawl Scores for 10 Most Compact and 10 Most Sprawling UZAs in 2010

### **Overall Compactness/Sprawl Index for 2000**

To make apples to apples comparisons between two years (2000 and 2010), we applied the factor coefficient matrices for four principal components in 2010 to built environmental variable values for 2000. This resulted in compactness factors for 2000 that are consistent with those for 2010.

Table 4.3 presents overall compactness scores and component scores for the ten most compact and the ten most sprawling large urbanized areas in 2000. As one would expect, rankings did not change dramatically in most cases over the ten years. San Francisco was the most compact in 2000, and has remained so. Atlanta was the most sprawling in 2000, and has remained so.

Table 4.3 Compactness/Sprawl Scores for 10 Most Compact and 10 Most Sprawling UZAs in 2000

| Rank                  | comfac | denfac | mixfac | cenfac | strfac |
|-----------------------|--------|--------|--------|--------|--------|
| Ten Most Compact UZAs |        |        |        |        |        |

| 1      | San Francisco-Oakland, CA | 184.06 | 219.66 | 128.39 | 162.41 | 149.84 |
|--------|---------------------------|--------|--------|--------|--------|--------|
| 2      | Laredo, TX                | 174.12 | 134.65 | 148.02 | 86.2   | 189.55 |
| 3      | Reading, PA               | 155.74 | 119.44 | 157.15 | 126.12 | 118.53 |
| 4      | Eugene, OR                | 151.42 | 121.5  | 141.47 | 130.73 | 114.89 |
| 5      | New Orleans, LA           | 149.64 | 161.24 | 106.84 | 95.97  | 181.06 |
| 6      | Stockton, CA              | 147.55 | 134.42 | 145.18 | 104.41 | 124.09 |
| 7      | Madison, WI               | 147.2  | 122.06 | 126.86 | 158.37 | 101.3  |
| 8      | Visalia, CA               | 145.05 | 116.84 | 142.48 | 107.53 | 108.93 |
| 9      | New York-Newark, NY-NJ-CT | 141.75 | 197.18 | 115.6  | 170.57 | 120.19 |
| 10     | Lincoln, NE               | 141.19 | 118.03 | 133.12 | 97.15  | 135.15 |
| Ten Mo | st Sprawling UZAs         |        |        |        |        |        |
| 153    | Fayetteville, NC          | 64.13  | 78.97  | 98.97  | 62.63  | 56.65  |
| 154    | Baton Rouge, LA           | 61.39  | 83.46  | 72.66  | 85.07  | 64.16  |
| 155    | Palm Bay-Melbourne, FL    | 58.18  | 76.29  | 75.93  | 62.16  | 77.64  |
| 156    | Nashville-Davidson, TN    | 58.11  | 89.26  | 67.83  | 106.22 | 46.1   |
| 157    | Victorville-Hesperia, CA  | 55.43  | 74.79  | 84.24  | 56.75  | 51.04  |
| 158    | Winston-Salem, NC         | 53.49  | 66.67  | 68.56  | 93.67  | 44.02  |
| 159    | Bonita Springs, FL        | 52.49  | 76.78  | 77.85  | 61.38  | 46.22  |
| 160    | Chattanooga, TN-GA        | 49.7   | 65.83  | 55.21  | 92.3   | 53.9   |
| 161    | Hickory, NC               | 48.76  | 49.14  | 81.34  | 75.33  | 42.67  |
| 162    | Atlanta, GA               | 39.5   | 88.54  | 90.28  | 106.29 | 19.9   |

### **Discussion**

This chapter developed and sought to validate an overall measure of compactness/sprawl for U.S. urbanized areas in 2010. By these measures, San Francisco is the most compact urbanized area in the nation, and Atlanta is the most sprawling.

Once we had measures of compactness for 2010, we were able to apply the same factor coefficients to data for 2000, thus generating consistent measures of compactness for 2000 and allowing longitudinal comparisons. Generalizing across the entire universe of large urbanized areas, compactness decreased and sprawl increased between the two census years, but only slightly. Summing the four indices of compactness (each with an average score of 100 in 2010), the average combined score was 405.8 in 2000, dropping to 400 in 2010, a relatively small change. This means that that on average, urbanized areas became less compact between 2000 and 2010. The compactness/sprawl measures have the additional quality of face validity. They paint a plausible picture of sprawl in the U.S.

# **Chapter 5. Derivation of Census Tract Sprawl Indices**

The concept of sprawl naturally brings to mind large geographic areas. When we say Atlanta sprawls badly, we are referring to the Atlanta Metropolitan Area, or perhaps if we are a transportation planner, to the Atlanta Urbanized Area. From the earliest writings on sprawl, sprawl was said to occur primarily at the periphery of urbanized areas moving outward. An individual street or block may contribute to sprawl, but we would not say it is sprawl. This distinction seems particularly poignant when we talk about population and employment centering, which is defined by interrelationships among block groups. If one block group or a group of them has a significantly higher density than those surrounding it, we can say the former serves as a center for the block groups surrounding it.

Yet, we know from the travel and public health literatures that there is a demand in the research community for built environmental metrics at the sub-county level, what might be described as the community or neighborhood scale. Most of the built environment-travel studies, and most of the built environment-obesity studies have related individual outcomes to such smaller areas. Therefore, we have derived sprawl-like metrics for census tracts within metropolitan areas, and posted them along with metropolitan area, urbanized area, and county sprawl metrics on the NIH website ((http://gis.cancer.gov). We have used the same type of variables as in larger area analyses, extracted principal components from multiple variables using principal component analysis, and once again, transformed the first principal component to an index with the mean of 100 and a standard deviation of 25. The component variables are:

|              | Component Matrix                          | Data Sources    | Factor<br>Loadings |
|--------------|-------------------------------------------|-----------------|--------------------|
| Density Fact | tor                                       |                 |                    |
| popden       | gross population density                  | Census 2010     | 0.596              |
| empden       | gross employment density                  | LED 2010        | 0.207              |
| jobpop       | job-population balance                    | LED 2010        | 0.374              |
| jobmix       | degree of job mixing (entropy)            | LED 2010        | 0.620              |
| walkscore    | weighted average Walk Score               | Walk Score Inc. | 0.864              |
| smlblk       | percentage of small urban blocks          | Census 2010     | 0.778              |
| avgblksze    | average block size                        | Census 2010     | -0.785             |
| intden       | intersection density                      | TomTom 2007     | 0.827              |
| 4way         | percentage of 4-or-more-way intersections | TomTom 2007     | 0.730              |
| Eigenvalue   |                                           |                 | 4.11               |
| Explained v  | ariance                                   |                 | 45.63%             |

Table 1.1: Variable Loadings on the Census Tract Compactness Index for 2010

## **Chapter 6. Conclusion**

This study has updated a county and metropolitan compactness/sprawl indices, widely used by planning and public researchers since their release in 2002 and 2003. The updated indices reflect conditions on the ground circa 2010.

This study has also developed new measures of compactness/sprawl that incorporate additional dimensions of the construct "sprawl," and used additional variables to operationalize these dimensions. The four dimensions, measured individually and with a composite index, are development density, land use mix, activity centering, and street accessibility. Measures, presented in the Appendices, are immediately available to study the costs and benefits of different urban forms.

Using updated and enhanced measures of compactness/sprawl, this study has validated both the original and new indices, and largely validated the individual measures representing the four dimensions of sprawl. These new results mirror and confirm the earlier findings of Ewing et al. (2002, 2003a, 2003b, 2003c). If anything, relationships of sprawl to important quality-of-life outcomes are stronger than in the original studies.

An obvious question is whether the new measures have more face, construct, and internal validity than the original compactness/sprawl indices, and thus should substitute for the original indices in future research. They have more face validity because places that fit the definition of sprawl in satellite imagery rank lowest on compactness. They have more construct validity because they capture more aspect of sprawl. As for internal validity, they generally outperform the original county sprawl indices as predictors of negative outcomes.

The new multi-dimensional factors representing density, mix, centering, and streets are somewhat correlated, of course, but still quite distinct in their relationships to outcomes. We can see these being used to determine which specific aspects of sprawl result in costs and benefits.

## References

Anselin, L. (1995). Local indicators of spatial association—LISA. *Geographical analysis*, 27(2), 93-115.

Baumont, C., Ertur, C., Le Gallo, J. (2003). 4 Spatial Convergence Clubs and the European Regional Growth Process, 1980. *European regional growth*, 131.

Bereitschaft, B., and K. Debbage. 2013. Urban Form, Air Pollution, and CO2 Emissions in Large U.S. Metropolitan Areas. *The Professional Geographer*, 65(4), 612–635.

Cho, S., Z. Chen, S.T. Yen, and D.B. Eastwood. 2006. The Effects of Urban Sprawl on Body Mass Index: Where People Live Does Matter. The 52nd Annual ACCI Conference, Baltimore, Maryland, March 15–18.

Craig, S. G., and P. T. Ng. 2001. Using quantile smoothing splines to identify employment subcenters in a multicentric urban area. *Journal of Urban Economics* 49: 100-120.

Doyle, S., A. Kelly-Schwartz, M. Schlossberg, and J. Stockard. 2006. Active Community Environments and Health: The Relationship of Walkable and Safe Communities to Individual Health. *Journal of the American Planning Association*. 72(1), 19–31.

Ewing, R. (1997). Is Los Angeles-style sprawl desirable? *Journal of the American Planning Association*, 63(1), 107-126.

Ewing, R. and Cervero, R. (2001). Travel and the built environment. *Transportation Research Record*, *1780*, 87-114.

Ewing R, Pendall R, Chen D. 2002. Measuring Sprawl and Its Impacts. Washington, DC: Smart Growth America.

Ewing, R., R. Pendall, and D. Chen. 2003a. Measuring Sprawl and Its Transportation Impacts. *Transportation Research Record*. 1832: 175-183.

Ewing R.,T. Schmid, R. Killingsworth, A. Zlot, and S. Raudenbush. 2003b. Relationship Between Urban Sprawl and Physical Activity, Obesity, and Morbidity. *American Journal of Health Promotion*.18:47-57.

Ewing, R., R. Schieber and C. Zegeer. 2003c. Urban Sprawl as a Risk Factor in Motor Vehicle Occupant and Pedestrian Fatalities, *American Journal of Public Health* 93: 1541-1545.

Ewing R., R. Brownson, and D. Berrigan. 2006. Relationship Between Urban Sprawl and Weight of U.S. Youth. *American Journal of Preventive Medicine*. 31: 464-474.

Ewing, R. and F. Rong. 2008. Impact of Urban Form on U.S. Residential Energy Use. *Housing Policy Debate*. 19: 1-30.

Ewing, R., Cervero, R.: Travel and the built environment: a meta-analysis. *Journal of the American Planning Association* 76(3), 265–294 (2010)

Fan, Y. and Y. Song. 2009. Is Sprawl Associated with a Widening Urban–Suburban Mortality Gap? *Journal of Urban Health: Bulletin of the New York Academy of Medicine*. 86(5): 708-728.

Fulton, W. Pendall, R, Nguyen. M. and Harrison, A. 2001. *Who Sprawls Most? How Growth Patterns Differ Across the U.S.*, Center for Urban & Metropolitan Policy, The Brookings Institution, Washington, D.C.

Giuliano, G., & Small, K. A. (1991). Subcenters in the Los Angeles region. *Regional science and urban* economics, 21(2), 163-182.

Griffin, B.A., Eibner, C., Bird, C.E., Jewell, A., Margolis, K., Shih, R., Escarce, J.J. (2013). The Relationship between Urban Sprawl and Coronary Heart Disease in Women. *Health & place*, 20, 51-61.

Holcombe, R.G., and Williams, D.W. (2012). Urban Sprawl and Transportation Externalities. *The Review of Regional Studies*, 40(3), 257-272.

Joshu, C. E., Boehmer, T. K., Brownson, R. C., & Ewing, R. (2008). Personal, neighbourhood and urban factors associated with obesity in the United States. *Journal of Epidemiology and community Health*, 62, 202-208.

Kahn, M.E. 2006. The Quality of Life in Sprawled versus Compact Cities," prepared for the OECD ECMT Regional Round, Berkeley, California, March 2006, Table 137, 27–28.

Kelly-Schwartz, A., J. Stockard, S. Doyle, and M. Schlossberg (2004). Is Sprawl Unhealthy? A Multilevel Analysis of the Relationship of Metropolitan Sprawl to the Health of Individuals. *Journal of Planning Education and Research*. 24: 184–196.

Kim, D., Subramanian, S.V., Gortmaker, S.L., Kawachi, I. (2006). U.S. state-and county-level social capital in relation to obesity and physical inactivity: a multilevel, multivariable analysis. *Social science & medicine*, 63(4), 1045-1059.

Lee, I.M., R. Ewing, and H.D. Sesso. 2009. The Built Environment and Physical Activity Levels: The Harvard Alumni Health Study. *American Journal of Preventive Medicine*, 37(4): 293-298.

Lee, B. (2007). "EDGE" OR "EDGELESS" CITIES? URBAN SPATIAL STRUCTURE IN US METROPOLITAN AREAS, 1980 TO 2000\*. *Journal of Regional Science*, *47*(3), 479-515.

McDonald, N., Trowbridge, M. (2009). Does the built environment affect when American teens become drivers? Evidence from the 2001 National Household Travel Survey. *Journal of Safety Research*, **40**(3), 177-183.

McMillen, D. P. (2004). Employment densities, spatial autocorrelation, and subcenters in large metropolitan areas. *Journal of Regional Science*, 44(2), 225-244.

Nguyen D, 2010. Evidence of the impacts of urban sprawl on social capital. *Environment and Planning B: Planning and Design* **37**(4) 610 – 627.

Plantinga, A. and S. Bernell. 2007. The Association between Urban Sprawl and Obesity: Is It a Two-Way Street? *Journal of Regional Science*, 47(5): 857–879.

Riguelle, F., Thomas, I., Verhetsel, A. (2007). Measuring urban polycentrism: a European case study and its implications. *Journal of Economic Geography*, 7(2), 193-215.

Schweitzer, L. and Zhou, J. 2010. Neighborhood Air Quality Outcomes in Compact and Sprawled Regions, *Journal of the American Planning Association*, 76(3): 363-371

Stone, B. 2008. Urban Sprawl and Air Quality in Large U.S. Cities. *Journal of Environmental Management*, 86:688-698.

Stone, B., J. Hess, H. Frumkin. 2010. Urban Form and Extreme Heat Events: Are Sprawling Cities More Vulnerable to Climate Change than Compact Cities? *Environmental Health Perspectives*, 118(10): 1425-1428.

Sturm, R. and D. Cohen. 2004. Suburban Sprawl and Physical and Mental Health, *Public Health* 118(7) 488-496.

Trowbridge, M. J. and N. C. McDonald. 2008. Urban Sprawl and Miles Driven Daily by Teenagers in the United States. *American Journal of Preventive Medicine* 34(3): 202-206.

Trowbridge, MJ, Gurka, MJ, O'Connor, R. 2009. Urban Sprawl and Delayed Ambulance Arrival in the United States. *American Journal of Preventive Medicine*. 37(5), 428-432.

Zolnik E J, 2011, "The effect of sprawl on private-vehicle commuting outcomes" *Environment and Planning A* 43(8) 1875 – 1893.

# Appendix A. County Compactness Indices for 2010, 2000, and Changes

New compactness index 2010 is the county compactness/sprawl index for 2010, using the six variables that make up the original county sprawl index. New compactness index 2000 is the analogous county sprawl index for 2000 obtained by applying component score coefficient values for 2010 to data for 2000. Change in new compactness index is the change in the index between 2000 and 2010 measured as above. Original compactness index is the county sprawl index for 2000 based on component score coefficient values for 2000. And change in original compactness index is the change in the index between 2000 based on component score coefficient values for 2000 using the indices for each year respectively, based on component score coefficient values for each year.

| fips  | county                | new<br>compactness | new<br>compactness | change in<br>new | original<br>compactness | change in<br>original |
|-------|-----------------------|--------------------|--------------------|------------------|-------------------------|-----------------------|
|       |                       | index 2010         | index 2000         | compactness      | index                   | compactness           |
|       |                       | Index 2010         | muex 2000          | index            | muex                    | index                 |
| 1009  | Blount County, AL     | 76.9               |                    | IIIdex           |                         | IIIdex                |
| 1005  | Calhoun County, AL    | 93.9               | 88.8               | 5.0              | 95.0                    | -1.1                  |
| 1013  | Chilton County, AL    | 74.2               | 64.4               | 9.8              | 74.1                    | 0.1                   |
| 1021  | Colbert County, AL    | 103.6              | 97.6               | 5.9              | 103.2                   | 0.3                   |
| 1051  | Elmore County, AL     | 89.9               | 79.4               | 10.5             | 84.6                    | 5.3                   |
| 1051  | Etowah County, AL     | 92.9               | 89.0               | 3.9              | 94.7                    | -1.8                  |
| 1055  | Houston County, AL    | 89.0               | 83.0               | 6.0              | 94.7                    | -1.8                  |
| 1009  | Jefferson County, AL  | 113.9              | 108.9              | 5.0              | 113.1                   | 0.8                   |
| 1073  | Lauderdale County, AL | 90.5               | 80.4               | 10.1             | 87.3                    | 3.2                   |
| 1077  | Lawrence County, AL   | 75.7               | 64.9               | 10.1             | 72.2                    | 3.4                   |
| 1079  | •                     | 93.6               | 85.4               | 8.3              | 91.1                    |                       |
| 1081  | Lee County, AL        | 85.2               | 75.2               | 9.9              | 91.1<br>81.6            | 2.5<br>3.6            |
| 1083  | Limestone County, AL  | 108.9              | 89.2               | 9.9              | 95.4                    | 13.5                  |
| 1089  | Madison County, AL    |                    | 98.8               | 19.7             | 95.4<br>103.4           | 6.5                   |
| 11097 | Mobile County, AL     | 109.9              |                    | 3.7              |                         |                       |
| 1101  | Montgomery County, AL | 105.3              | 101.6              |                  | 107.3<br>95.1           | -1.9                  |
| -     | Morgan County, AL     | 100.0              | 89.6               | 10.5             |                         | 4.9                   |
| 1113  | Russell County, AL    | 92.9               | 86.2               | 6.7              | 92.8                    | 0.1                   |
| 1115  | St. Clair County, AL  | 89.7               | 82.2               | 7.5              | 87.5                    | 2.1                   |
| 1117  | Shelby County, AL     | 96.1               | 85.4               | 10.7             | 91.5                    | 4.6                   |
| 1125  | Tuscaloosa County, AL | 105.0              | 94.4               | 10.5             | 99.9                    | 5.0                   |
| 1127  | Walker County, AL     | 89.2               | 83.1               | 6.1              | 89.1                    | 0.1                   |
| 4005  | Coconino County, AZ   | 87.3               | 74.0               | 13.4             | 88.5                    | -1.1                  |
| 4013  | Maricopa County, AZ   | 116.5              | 111.8              | 4.7              | 119.4                   | -2.8                  |
| 4015  | Mohave County, AZ     | 91.3               |                    |                  |                         |                       |
| 4019  | Pima County, AZ       | 104.0              | 103.2              | 0.9              | 106.6                   | -2.6                  |
| 4021  | Pinal County, AZ      | 100.7              | 79.8               | 21.0             | 87.5                    | 13.2                  |
| 4025  | Yavapai County, AZ    | 93.5               | 83.1               | 10.4             | 90.5                    | 3.1                   |
| 4027  | Yuma County, AZ       | 104.7              | 92.6               | 12.1             | 101.1                   | 3.6                   |

| 5007 | Benton County, AR        | 94.0  | 86.9  | 7.0        | 92.8  | 1.2  |
|------|--------------------------|-------|-------|------------|-------|------|
| 5031 | Craighead County, AR     | 87.4  | 79.6  | 7.8        | 87.1  | 0.2  |
| 5031 | Crawford County, AR      | 84.9  | 81.1  | 3.8        | 88.9  | -4.0 |
| 5035 | Crittenden County, AR    | 91.6  | 81.1  | 1.9        | 100.2 | -4.0 |
| 5035 | Faulkner County, AR      | 87.4  | 81.1  | 6.3        | 88.0  | -0.6 |
| 5045 | Garland County, AR       | 94.5  | 91.6  | 2.9        | 95.7  | -0.0 |
| 5051 | Grant County, AR         | 66.8  | 64.3  | 2.5        | 73.6  | -1.2 |
| 5053 | Jefferson County, AR     | 100.2 | 98.1  | 2.3        | 104.4 | -0.8 |
| 5079 | Lincoln County, AR       | 72.3  | 70.9  | 1.4        | 81.4  | -4.2 |
| 5085 | Lonoke County, AR        | 82.4  | 70.9  | 4.7        | 81.4  | -3.5 |
| 5085 |                          | 79.2  | 77.0  | 4.7        | 63.9  | -3.3 |
| -    | Madison County, AR       |       | 00.0  | 0.1        | 100 4 | 7 5  |
| 5091 | Miller County, AR        | 98.9  | 98.8  | 0.1<br>5.7 | 106.4 | -7.5 |
| 5111 | Poinsett County, AR      | 73.6  | 67.9  |            | 80.8  | -7.3 |
| 5119 | Pulaski County, AR       | 114.1 | 108.7 | 5.4        | 112.6 | 1.5  |
| 5125 | Saline County, AR        | 85.3  | 80.1  | 5.2        | 86.0  | -0.7 |
| 5131 | Sebastian County, AR     | 102.8 | 100.4 | 2.4        | 105.1 | -2.4 |
| 5143 | Washington County, AR    | 101.1 | 90.7  | 10.5       | 98.3  | 2.8  |
| 6001 | Alameda County, CA       | 153.3 | 145.3 | 7.9        | 152.4 | 0.9  |
| 6007 | Butte County, CA         | 97.5  | 95.5  | 2.0        | 103.7 | -6.2 |
| 6013 | Contra Costa County, CA  | 121.7 | 118.1 | 3.6        | 123.6 | -1.9 |
| 6017 | El Dorado County, CA     | 89.7  | 85.0  | 4.7        | 90.0  | -0.3 |
| 6019 | Fresno County, CA        | 100.0 | 96.0  | 4.0        | 104.2 | -4.3 |
| 6025 | Imperial County, CA      | 89.7  | 88.1  | 1.6        | 95.8  | -6.1 |
| 6029 | Kern County, CA          | 96.6  | 92.4  | 4.3        | 100.8 | -4.2 |
| 6031 | Kings County, CA         | 96.8  | 85.2  | 11.6       | 95.6  | 1.3  |
| 6037 | Los Angeles County, CA   | 160.6 | 155.9 | 4.7        | 161.5 | -0.9 |
| 6039 | Madera County, CA        | 82.6  | 80.3  | 2.3        | 88.5  | -5.9 |
| 6041 | Marin County, CA         | 115.9 | 111.8 | 4.1        | 119.2 | -3.3 |
| 6047 | Merced County, CA        | 94.1  | 89.7  | 4.4        | 99.2  | -5.1 |
| 6053 | Monterey County, CA      | 110.6 | 108.7 | 1.8        | 120.3 | -9.7 |
| 6055 | Napa County, CA          | 110.7 | 107.0 | 3.7        | 112.3 | -1.6 |
| 6059 | Orange County, CA        | 145.8 | 140.6 | 5.1        | 146.2 | -0.4 |
| 6061 | Placer County, CA        | 102.3 | 94.6  | 7.6        | 100.5 | 1.7  |
| 6065 | Riverside County, CA     | 105.8 | 100.2 | 5.7        | 107.3 | -1.5 |
| 6067 | Sacramento County, CA    | 124.4 | 118.0 | 6.5        | 124.5 | -0.1 |
| 6069 | San Benito County, CA    | 101.5 | 97.0  | 4.5        | 107.5 | -5.9 |
|      | San Bernardino County,   |       |       |            |       |      |
| 6071 | CA                       | 102.4 | 99.2  | 3.2        | 106.7 | -4.2 |
| 6073 | San Diego County, CA     | 126.0 | 122.6 | 3.4        | 130.7 | -4.6 |
| 6075 | San Francisco County, CA | 247.8 | 246.1 | 1.7        | 257.6 | -9.8 |
| 6077 | San Joaquin County, CA   | 117.3 | 110.1 | 7.2        | 118.3 | -1.0 |
|      | San Luis Obispo County,  |       |       |            |       |      |
| 6079 | CA                       | 100.6 | 94.2  | 6.4        | 101.8 | -1.2 |
| 6081 | San Mateo County, CA     | 141.8 | 138.6 | 3.2        | 146.0 | -4.2 |

| 6083  | Santa Barbara County, CA | 124.8         | 117.3 | 7.5   | 125.7 | -0.9  |
|-------|--------------------------|---------------|-------|-------|-------|-------|
| 6085  | Santa Clara County, CA   | 124.0         | 117.5 | 4.6   | 123.7 | -0.9  |
| 6085  | Santa Cruz County, CA    | 113.1         | 133.5 | 1.3   | 140.5 | -2.4  |
| 6087  | •                        | 94.1          | 82.3  | 1.5   | 88.6  |       |
|       | Shasta County, CA        | 94.1<br>114.9 | 82.3  | 4.0   |       | 5.4   |
| 6095  | Solano County, CA        |               |       |       | 117.5 | -2.6  |
| 6097  | Sonoma County, CA        | 104.2         | 102.1 | 2.1   | 106.6 | -2.4  |
| 6099  | Stanislaus County, CA    | 111.0         | 108.6 | 2.4   | 117.4 | -6.5  |
| 6101  | Sutter County, CA        | 92.6          | 86.0  | 6.6   | 95.1  | -2.5  |
| 6107  | Tulare County, CA        | 99.0          | 91.7  | 7.3   | 103.1 | -4.1  |
| 6111  | Ventura County, CA       | 119.6         | 112.5 | 7.1   | 121.6 | -1.9  |
| 6113  | Yolo County, CA          | 108.8         | 105.8 | 3.0   | 113.1 | -4.3  |
| 6115  | Yuba County, CA          | 93.6          | 89.5  | 4.2   | 96.5  | -2.9  |
| 8001  | Adams County, CO         | 117.7         | 127.9 | -10.2 | 130.3 | -12.6 |
| 8005  | Arapahoe County, CO      | 122.3         | 117.3 | 5.0   | 122.0 | 0.3   |
| 8013  | Boulder County, CO       | 114.7         | 111.3 | 3.4   | 113.9 | 0.8   |
| 8014  | Broomfield County, CO    | 117.9         |       |       |       |       |
| 8019  | Clear Creek County, CO   | 96.0          | 93.4  | 2.6   | 97.2  | -1.2  |
| 8031  | Denver County, CO        | 144.4         |       |       |       |       |
| 8035  | Douglas County, CO       | 104.1         | 95.7  | 8.4   | 99.0  | 5.1   |
| 8039  | Elbert County, CO        | 68.4          |       |       |       |       |
| 8041  | El Paso County, CO       | 117.7         | 107.4 | 10.3  | 110.2 | 7.5   |
| 8059  | Jefferson County, CO     | 115.0         | 115.9 | -0.9  | 117.8 | -2.9  |
| 8069  | Larimer County, CO       | 105.0         | 100.2 | 4.9   | 105.2 | -0.1  |
| 8077  | Mesa County, CO          | 104.8         | 97.5  | 7.3   | 105.7 | -0.9  |
| 8101  | Pueblo County, CO        | 107.6         | 103.1 | 4.5   | 110.7 | -3.1  |
| 8119  | Teller County, CO        | 97.1          | 91.9  | 5.2   | 93.6  | 3.5   |
| 8123  | Weld County, CO          | 97.3          | 88.9  | 8.4   | 99.6  | -2.3  |
| 9001  | Fairfield County, CT     | 115.0         | 111.3 | 3.8   | 115.0 | 0.0   |
| 9003  | Hartford County, CT      | 107.5         | 104.5 | 3.0   | 110.1 | -2.5  |
| 9007  | Middlesex County, CT     | 93.1          | 90.0  | 3.0   | 94.6  | -1.6  |
| 9009  | New Haven County, CT     | 112.2         | 108.9 | 3.3   | 113.7 | -1.5  |
| 9011  | New London County, CT    | 95.7          | 93.0  | 2.7   | 98.9  | -3.2  |
| 9013  | Tolland County, CT       | 84.3          | 80.9  | 3.4   | 86.4  | -2.1  |
| 10001 | Kent County, DE          | 93.0          | 85.9  | 7.1   | 92.1  | 0.9   |
| 10003 | New Castle County, DE    | 119.4         | 117.4 | 1.9   | 122.3 | -2.9  |
| 11001 | District of Columbia, DC | 193.3         |       |       |       |       |
| 12001 | Alachua County, FL       | 106.6         | 105.7 | 0.9   | 109.6 | -2.9  |
| 12003 | Baker County, FL         | 72.7          | 70.0  | 2.7   | 77.4  | -4.8  |
| 12005 | Bay County, FL           | 102.1         | 103.0 | -0.9  | 107.4 | -5.3  |
| 12009 | Brevard County, FL       | 108.4         | 105.1 | 3.3   | 109.6 | -1.2  |
| 12011 | Broward County, FL       | 133.0         | 131.6 | 1.3   | 136.5 | -3.6  |
| 12015 | Charlotte County, FL     | 100.3         | 96.1  | 4.2   | 100.1 | 0.2   |
| 12019 | Clay County, FL          | 98.7          | 85.2  | 13.5  | 92.0  | 6.7   |
| 12013 | Collier County, FL       | 104.5         | 93.9  | 10.6  | 99.2  | 5.2   |
| 12021 | Comer County, TE         | 104.3         | 53.5  | 10.0  | 55.Z  | 5.2   |

| 12031          | Duval County, FL        | 117.4 | 116.0 | 1.4  | 120.3         | -2.9        |
|----------------|-------------------------|-------|-------|------|---------------|-------------|
| 12031          | Escambia County, FL     | 106.4 | 106.3 | 0.2  | 111.0         | -4.5        |
| 12035          | Flagler County, FL      | 99.2  | 100.5 | 0.2  | 111.0         |             |
| 12039          | Gadsden County, FL      | 91.0  | 86.6  | 4.4  | 91.8          | -0.9        |
| 12053          | Hernando County, FL     | 98.7  | 94.1  | 4.6  | 98.6          | 0.1         |
| 12055          | Hillsborough County, FL | 119.1 | 115.9 | 3.2  | 119.6         | -0.5        |
| 12057          | Indian River County, FL | 111.1 | 103.6 | 7.5  | 115.0         | 3.5         |
| 12001          | Lake County, FL         | 108.0 | 103.0 | 6.5  | 107.5         | 2.9         |
| 12005          | Lee County, FL          | 108.0 | 101.0 | 6.5  | 105.1         | 2.2         |
| 12071          | Leon County, FL         | 107.0 | 97.0  | 5.8  | 104.8         | 0.7         |
| 12073          | Manatee County, FL      | 102.8 | 114.2 | 2.2  | 102.0         | -1.7        |
|                |                         | 93.5  | 92.1  | 1.4  |               |             |
| 12083<br>12085 | Marion County, FL       | 108.1 | 100.6 | 7.4  | 96.0<br>105.3 | -2.5<br>2.7 |
| 12085          | Martin County, FL       | 108.1 | 100.6 | 5.7  | 105.3         | 2.7         |
| -              | Miami-Dade County, FL   | 92.9  | 79.3  | 13.7 | 0.4.1         |             |
| 12089          | Nassau County, FL       |       |       | -1.6 | 84.1          | 8.9         |
| 12091          | Okaloosa County, FL     | 101.3 | 102.9 |      | 108.5         | -7.2        |
| 12095          | Orange County, FL       | 119.4 | 115.8 | 3.6  | 121.2         | -1.8        |
| 12097          | Osceola County, FL      | 106.9 | 105.1 | 1.7  | 109.6         | -2.7        |
| 12099          | Palm Beach County, FL   | 114.2 | 112.4 | 1.8  | 115.8         | -1.6        |
| 12101          | Pasco County, FL        | 110.8 | 110.1 | 0.7  | 114.9         | -4.0        |
| 12103          | Pinellas County, FL     | 133.1 | 131.6 | 1.5  | 134.0         | -0.9        |
| 12105          | Polk County, FL         | 110.0 | 104.9 | 5.1  | 109.2         | 0.8         |
| 12109          | St. Johns County, FL    | 104.1 | 99.9  | 4.2  | 103.0         | 1.1         |
| 12111          | St. Lucie County, FL    | 110.1 | 100.0 | 10.1 | 104.5         | 5.6         |
| 12113          | Santa Rosa County, FL   | 84.6  | 77.5  | 7.1  | 84.0          | 0.6         |
| 12115          | Sarasota County, FL     | 111.0 | 110.2 | 0.8  | 114.0         | -3.1        |
| 12117          | Seminole County, FL     | 116.8 | 113.8 | 3.0  | 117.5         | -0.7        |
| 12127          | Volusia County, FL      | 107.4 | 105.0 | 2.4  | 109.2         | -1.8        |
| 12129          | Wakulla County, FL      | 83.9  | 73.8  | 10.1 | 80.7          | 3.2         |
| 13013          | Barrow County, GA       | 81.6  | 75.8  | 5.9  | 81.8          | -0.2        |
| 13015          | Bartow County, GA       | 86.6  | 79.0  | 7.7  | 85.2          | 1.5         |
| 13021          | Bibb County, GA         | 105.2 | 103.6 | 1.6  | 107.1         | -1.9        |
| 13029          | Bryan County, GA        | 80.9  | 70.0  | 10.9 | 77.2          | 3.7         |
| 13035          | Butts County, GA        | 79.9  | 76.9  | 3.0  | 82.9          | -2.9        |
| 13045          | Carroll County, GA      | 75.3  | 71.9  | 3.4  | 77.9          | -2.6        |
| 13047          | Catoosa County, GA      | 88.5  | 84.4  | 4.1  | 89.5          | -1.0        |
| 13051          | Chatham County, GA      | 113.3 | 113.0 | 0.3  | 115.8         | -2.5        |
|                | Chattahoochee County,   |       |       |      |               |             |
| 13053          | GA                      | 92.0  |       |      |               |             |
| 13057          | Cherokee County, GA     | 94.9  | 84.0  | 11.0 | 90.0          | 4.9         |
| 13059          | Clarke County, GA       | 100.6 | 96.6  | 4.1  | 100.4         | 0.2         |
| 13063          | Clayton County, GA      | 107.2 | 101.2 | 6.0  | 105.1         | 2.1         |
| 13067          | Cobb County, GA         | 111.8 | 102.8 | 9.0  | 106.4         | 5.4         |
| 13073          | Columbia County, GA     | 88.1  | 87.2  | 0.9  | 91.5          | -3.4        |

| 13077 | Coweta County, GA     | 84.0  | 79.7  | 4.2  | 84.7  | -0.7  |
|-------|-----------------------|-------|-------|------|-------|-------|
| 13077 | Dade County, GA       | 84.0  | 75.1  | 6.4  | 81.3  | 0.2   |
| 13085 | Dawson County, GA     | 80.4  | 72.5  | 7.9  | 79.9  | 0.4   |
| 13089 | DeKalb County, GA     | 112.0 | 107.4 | 4.6  | 110.3 | 1.7   |
| 13095 | Dougherty County, GA  | 102.7 | 95.3  | 7.4  | 99.9  | 2.7   |
| 13097 | Douglas County, GA    | 86.3  | 79.5  | 6.7  | 84.4  | 1.9   |
| 13103 | Effingham County, GA  | 83.2  | 79.6  | 3.6  | 85.8  | -2.7  |
| 13113 | Fayette County, GA    | 85.2  | 73.8  | 10.4 | 79.8  | 5.4   |
| 13115 | Floyd County, GA      | 91.7  | 89.5  | 2.2  | 94.3  | -2.6  |
| 13117 | Forsyth County, GA    | 84.9  | 70.6  | 14.4 | 76.2  | 8.7   |
| 13121 | Fulton County, GA     | 112.3 | 107.6 | 4.7  | 111.3 | 1.0   |
| 13127 | Glynn County, GA      | 99.2  | 96.7  | 2.5  | 100.0 | -0.8  |
| 13135 | Gwinnett County, GA   | 104.0 | 94.5  | 9.5  | 98.9  | 5.1   |
| 13139 | Hall County, GA       | 93.3  | 87.6  | 5.6  | 91.7  | 1.6   |
| 13143 | Haralson County, GA   | 85.1  | 76.4  | 8.7  | 82.5  | 2.6   |
| 13145 | Harris County, GA     | 78.6  |       |      |       |       |
| 13151 | Henry County, GA      | 87.2  | 72.5  | 14.7 | 78.5  | 8.7   |
| 13153 | Houston County, GA    | 100.2 | 95.9  | 4.3  | 99.6  | 0.5   |
| 13169 | Jones County, GA      | 73.6  | 70.8  | 2.8  | 77.6  | -4.0  |
| 13171 | Lamar County, GA      | 77.0  | 69.7  | 7.3  | 77.0  | 0.0   |
| 13177 | Lee County, GA        | 77.8  | 74.0  | 3.8  | 80.9  | -3.1  |
| 13179 | Liberty County, GA    | 97.8  | 88.9  | 8.9  | 93.4  | 4.5   |
| 13185 | Lowndes County, GA    | 95.4  | 92.7  | 2.6  | 97.1  | -1.7  |
| 13189 | McDuffie County, GA   | 80.3  | 75.7  | 4.7  | 81.8  | -1.5  |
| 13195 | Madison County, GA    | 74.7  | 62.8  | 11.9 | 73.5  | 1.2   |
| 13199 | Meriwether County, GA | 74.1  | 69.2  | 4.9  | 76.3  | -2.2  |
| 13207 | Monroe County, GA     | 76.4  | 73.3  | 3.0  | 79.9  | -3.5  |
| 13213 | Murray County, GA     | 77.9  | 74.8  | 3.1  | 80.6  | -2.7  |
| 13215 | Muscogee County, GA   | 108.0 | 108.3 | -0.3 | 113.0 | -5.1  |
| 13217 | Newton County, GA     | 88.9  | 78.7  | 10.2 | 83.4  | 5.5   |
| 13219 | Oconee County, GA     | 79.2  | 72.6  | 6.6  | 78.9  | 0.3   |
| 13221 | Oglethorpe County, GA | 67.7  |       |      |       |       |
| 13223 | Paulding County, GA   | 85.6  | 80.9  | 4.7  | 86.4  | -0.8  |
| 13227 | Pickens County, GA    | 76.5  | 74.7  | 1.8  | 80.8  | -4.3  |
| 13231 | Pike County, GA       | 71.5  |       |      |       |       |
| 13245 | Richmond County, GA   | 105.7 | 102.2 | 3.5  | 106.9 | -1.2  |
| 13247 | Rockdale County, GA   | 94.5  | 82.4  | 12.1 | 86.9  | 7.6   |
| 13255 | Spalding County, GA   | 87.7  | 85.4  | 2.3  | 88.9  | -1.2  |
| 13273 | Terrell County, GA    | 76.8  | 82.2  | -5.4 | 90.7  | -13.9 |
| 13295 | Walker County, GA     | 83.6  | 79.7  | 3.8  | 85.1  | -1.6  |
| 13297 | Walton County, GA     | 73.0  | 67.2  | 5.7  | 74.0  | -1.0  |
| 13313 | Whitfield County, GA  | 94.7  | 92.5  | 2.2  | 97.4  | -2.7  |
| 13321 | Worth County, GA      | 73.3  | 64.8  | 8.5  | 73.8  | -0.4  |
| 16001 | Ada County, ID        | 109.3 | 103.1 | 6.2  | 108.0 | 1.3   |

| 16005 | Bannock County, ID     | 112.3 | 100.2 | 12.1 | 111.5 | 0.8   |
|-------|------------------------|-------|-------|------|-------|-------|
| 16019 | Bonneville County, ID  | 105.1 | 95.0  | 10.0 | 102.6 | 2.4   |
| 16015 | Canyon County, ID      | 104.6 | 92.2  | 12.4 | 99.4  | 5.2   |
| 16045 | Gem County, ID         | 94.7  | 72.4  | 22.3 | 81.3  | 13.4  |
| 16051 | Jefferson County, ID   | 83.0  | 63.6  | 19.4 | 79.0  | 4.0   |
| 16051 | Kootenai County, ID    | 101.1 | 94.9  | 6.2  | 98.8  | 2.2   |
| 16069 | Nez Perce County, ID   | 98.3  | 101.7 | -3.3 | 107.9 | -9.6  |
| 17003 | Alexander County, IL   | 89.3  | 10117 | 5.5  | 10713 | 5.0   |
| 17005 | Bond County, IL        | 83.4  | 77.9  | 5.6  | 86.3  | -2.9  |
| 17007 | Boone County, IL       | 92.4  | 89.7  | 2.7  | 97.5  | -5.1  |
| 17019 | Champaign County, IL   | 109.0 | 101.1 | 7.8  | 111.4 | -2.4  |
| 17027 | Clinton County, IL     | 83.2  | 82.6  | 0.6  | 91.2  | -8.0  |
| 17031 | Cook County, IL        | 167.6 | 165.2 | 2.4  | 171.3 | -3.6  |
| 17037 | DeKalb County, IL      | 97.8  | 90.8  | 7.0  | 100.2 | -2.3  |
| 17043 | DuPage County, IL      | 118.8 | 117.0 | 1.8  | 121.3 | -2.5  |
| 17053 | Ford County, IL        | 67.3  | 70.1  | -2.9 | 82.3  | -15.0 |
| 17063 | Grundy County, IL      | 100.4 | 84.7  | 15.8 | 92.2  | 8.3   |
| 17073 | Henry County, IL       | 79.9  | 79.2  | 0.7  | 88.3  | -8.4  |
| 17083 | Jersey County, IL      | 82.2  |       |      |       |       |
| 17089 | Kane County, IL        | 113.1 | 109.9 | 3.2  | 115.1 | -1.9  |
| 17091 | Kankakee County, IL    | 92.0  | 90.4  | 1.6  | 98.7  | -6.7  |
| 17093 | Kendall County, IL     | 95.5  | 87.8  | 7.7  | 95.2  | 0.3   |
| 17097 | Lake County, IL        | 112.9 | 110.6 | 2.3  | 114.5 | -1.6  |
| 17111 | McHenry County, IL     | 100.9 | 99.9  | 1.0  | 104.7 | -3.8  |
| 17113 | McLean County, IL      | 102.8 | 100.8 | 2.0  | 110.1 | -7.3  |
| 17115 | Macon County, IL       | 93.3  | 97.4  | -4.1 | 104.3 | -11.0 |
| 17117 | Macoupin County, IL    | 93.2  | 88.6  | 4.7  | 99.1  | -5.9  |
| 17119 | Madison County, IL     | 105.5 | 101.2 | 4.3  | 107.4 | -1.9  |
| 17123 | Marshall County, IL    | 88.9  | 77.7  | 11.1 | 87.7  | 1.1   |
| 17129 | Menard County, IL      | 78.8  | 78.6  | 0.2  | 97.4  | -18.6 |
| 17131 | Mercer County, IL      | 74.9  | 72.2  | 2.7  | 82.5  | -7.7  |
| 17133 | Monroe County, IL      | 87.9  | 81.6  | 6.2  | 90.2  | -2.3  |
| 17143 | Peoria County, IL      | 104.3 | 104.6 | -0.2 | 110.0 | -5.6  |
| 17147 | Piatt County, IL       | 76.4  | 75.8  | 0.6  | 87.8  | -11.4 |
| 17161 | Rock Island County, IL | 107.8 | 107.0 | 0.8  | 111.9 | -4.1  |
| 17163 | St. Clair County, IL   | 104.7 | 103.4 | 1.3  | 109.0 | -4.3  |
| 17167 | Sangamon County, IL    | 103.1 | 101.3 | 1.8  | 108.8 | -5.8  |
| 17179 | Tazewell County, IL    | 103.0 | 94.7  | 8.3  | 100.8 | 2.2   |
| 17183 | Vermilion County, IL   | 98.1  | 85.1  | 13.1 | 93.8  | 4.3   |
| 17197 | Will County, IL        | 103.9 | 98.7  | 5.2  | 103.5 | 0.4   |
| 17201 | Winnebago County, IL   | 110.1 | 106.1 | 4.0  | 111.3 | -1.1  |
| 17203 | Woodford County, IL    | 88.7  | 77.5  | 11.1 | 87.3  | 1.4   |
| 18003 | Allen County, IN       | 101.3 | 96.4  | 4.8  | 102.8 | -1.6  |
| 18005 | Bartholomew County, IN | 106.2 | 92.7  | 13.5 | 99.0  | 7.2   |

| rr    |                        |       |       |      |       |       |
|-------|------------------------|-------|-------|------|-------|-------|
| 18011 | Boone County, IN       | 91.8  | 73.4  | 18.4 | 84.0  | 7.8   |
| 18013 | Brown County, IN       | 80.8  | 81.0  | -0.2 | 86.1  | -5.3  |
| 18015 | Carroll County, IN     | 81.3  | 67.2  | 14.1 | 76.9  | 4.3   |
| 18019 | Clark County, IN       | 105.1 | 102.0 | 3.2  | 107.5 | -2.3  |
| 18021 | Clay County, IN        | 86.2  | 76.4  | 9.8  | 86.8  | -0.7  |
| 18029 | Dearborn County, IN    | 94.1  | 81.9  | 12.2 | 89.1  | 5.0   |
| 18035 | Delaware County, IN    | 107.3 | 98.9  | 8.4  | 105.5 | 1.9   |
| 18039 | Elkhart County, IN     | 104.8 | 92.2  | 12.5 | 98.7  | 6.1   |
| 18043 | Floyd County, IN       | 105.2 | 100.5 | 4.6  | 102.1 | 3.0   |
| 18047 | Franklin County, IN    | 82.2  | 78.0  | 4.2  | 87.0  | -4.8  |
| 18051 | Gibson County, IN      | 90.0  | 78.2  | 11.9 | 88.2  | 1.8   |
| 18055 | Greene County, IN      | 78.3  | 79.2  | -1.0 | 87.3  | -9.1  |
| 18057 | Hamilton County, IN    | 101.1 | 93.2  | 7.9  | 98.5  | 2.6   |
| 18059 | Hancock County, IN     | 87.5  | 79.1  | 8.3  | 87.3  | 0.2   |
| 18061 | Harrison County, IN    | 76.1  | 71.7  | 4.4  | 78.8  | -2.8  |
| 18063 | Hendricks County, IN   | 94.2  | 83.9  | 10.4 | 90.0  | 4.2   |
| 18067 | Howard County, IN      | 105.1 | 93.2  | 11.9 | 101.1 | 3.9   |
| 18073 | Jasper County, IN      | 66.8  | 61.7  | 5.1  | 72.8  | -6.0  |
| 18081 | Johnson County, IN     | 104.9 | 96.0  | 8.9  | 101.1 | 3.8   |
| 18089 | Lake County, IN        | 115.4 | 112.5 | 2.9  | 116.9 | -1.6  |
| 18091 | LaPorte County, IN     | 92.9  | 90.4  | 2.5  | 96.8  | -3.9  |
| 18095 | Madison County, IN     | 101.5 | 99.8  | 1.7  | 105.7 | -4.1  |
| 18097 | Marion County, IN      | 116.5 | 114.6 | 1.9  | 119.2 | -2.7  |
| 18105 | Monroe County, IN      | 105.5 | 104.3 | 1.1  | 106.3 | -0.8  |
| 18109 | Morgan County, IN      | 99.4  | 86.4  | 13.1 | 93.0  | 6.4   |
| 18115 | Ohio County, IN        | 88.0  | 80.1  | 7.9  | 89.0  | -0.9  |
| 18119 | Owen County, IN        | 90.0  | 71.0  | 19.0 | 81.8  | 8.2   |
| 18127 | Porter County, IN      | 94.4  | 93.1  | 1.4  | 98.6  | -4.2  |
| 18129 | Posey County, IN       | 84.0  | 82.3  | 1.7  | 91.6  | -7.6  |
| 18133 | Putnam County, IN      | 75.5  | 72.3  | 3.1  | 80.8  | -5.3  |
| 18141 | St. Joseph County, IN  | 115.2 | 106.0 | 9.2  | 112.6 | 2.6   |
| 18145 | Shelby County, IN      | 98.8  | 84.7  | 14.1 | 93.7  | 5.1   |
| 18153 | Sullivan County, IN    | 74.1  | 71.9  | 2.2  | 80.8  | -6.8  |
| 18157 | Tippecanoe County, IN  | 106.1 | 104.1 | 2.1  | 110.0 | -3.9  |
| 18159 | Tipton County, IN      | 66.4  | 64.5  | 1.9  | 77.1  | -10.6 |
| 18163 | Vanderburgh County, IN | 109.1 | 107.2 | 1.9  | 111.5 | -2.4  |
| 18165 | Vermillion County, IN  | 110.8 | 102.0 | 8.8  | 109.5 | 1.3   |
| 18167 | Vigo County, IN        | 109.6 | 101.3 | 8.3  | 107.3 | 2.2   |
| 18173 | Warrick County, IN     | 92.2  | 83.6  | 8.6  | 91.1  | 1.1   |
| 18175 | Washington County, IN  | 89.6  | 77.4  | 12.2 | 87.9  | 1.7   |
| 18179 | Wells County, IN       | 70.5  | 65.3  | 5.2  | 76.1  | -5.6  |
| 18183 | Whitley County, IN     | 68.6  | 67.4  | 1.2  | 77.7  | -9.1  |
| 19011 | Benton County, IA      | 80.1  | 66.9  | 13.3 | 78.2  | 1.9   |
| 19013 | Black Hawk County, IA  | 104.1 | 101.6 | 2.5  | 108.1 | -4.0  |
| 13012 | BIACK HAWK COUILLY, IA | 104.1 | 101.0 | 2.5  | 100.1 | -4.0  |

| Bremer County 1A        | 75 5                                                                                                                                                                                                                        | 72 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| · ·                     | 108.5                                                                                                                                                                                                                       | 105.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | 05.2                                                                                                                                                                                                                        | 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>1</b> .              |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                                                                                                                                                             | 62.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 72.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Geary County, KS        | 107.6                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Harvey County, KS       | 70.9                                                                                                                                                                                                                        | 69.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Jackson County, KS      | 54.6                                                                                                                                                                                                                        | 47.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Johnson County, KS      | 104.9                                                                                                                                                                                                                       | 103.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Leavenworth County, KS  | 92.8                                                                                                                                                                                                                        | 91.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Miami County, KS        | 87.8                                                                                                                                                                                                                        | 65.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Osage County, KS        | 66.9                                                                                                                                                                                                                        | 64.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Pottawatomie County, KS | 85.9                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Riley County, KS        | 99.5                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sedgwick County, KS     | 108.0                                                                                                                                                                                                                       | 106.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 111.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Shawnee County, KS      | 102.3                                                                                                                                                                                                                       | 99.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 105.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sumner County, KS       | 77.9                                                                                                                                                                                                                        | 61.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 73.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Wyandotte County, KS    | 114.9                                                                                                                                                                                                                       | 111.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 116.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Boone County, KY        | 95.6                                                                                                                                                                                                                        | 92.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | 95.7                                                                                                                                                                                                                        | 80.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 101.5                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| , , ,                   |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>1</b> .              |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>1</b> .              |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>,</b> .              |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | Jackson County, KS<br>Johnson County, KS<br>Leavenworth County, KS<br>Miami County, KS<br>Osage County, KS<br>Pottawatomie County, KS<br>Riley County, KS<br>Sedgwick County, KS<br>Shawnee County, KS<br>Sumner County, KS | Dallas County, IA87.0Dubuque County, IA102.0Harrison County, IA69.0Johnson County, IA97.8Jones County, IA83.9Linn County, IA100.1Madison County, IA77.7Mills County, IA81.6Polk County, IA95.3Scott County, IA95.3Scott County, IA97.0Warren County, IA97.0Warren County, IA97.0Warren County, IA97.0Warren County, IA97.0Warren County, IA97.0Warren County, IA97.1Franklin County, IA99.1Franklin County, KS84.9Geary County, KS99.1Franklin County, KS99.1Franklin County, KS90.1Jackson County, KS90.5Sedgwick County, KS90.5Sedgwick County, KS90.5Sedgwick County, KS102.3Sumner County, KS102.3Sumner County, KS102.3Sumner County, KY95.7Boyd County, KY95.7Boyd County, KY95.7Boyd County, KY101.5Bullitt County, KY103.9Fayette County, KY103.9Fayette County, KY103.9Fayette County, KY103.9 </td <td>Dallas County, IA         87.0         76.2           Dubuque County, IA         102.0         101.7           Harrison County, IA         69.0         65.3           Johnson County, IA         97.8         94.0           Jones County, IA         83.9         70.1           Linn County, IA         100.1         99.0           Madison County, IA         77.7         64.5           Mills County, IA         81.6         682.2           Polk County, IA         108.5         105.1           Pottawattamic County,         1         95.3         89.3           Scott County, IA         91.3         103.4           Story County, IA         97.0         90.8           Warren County, IA         97.0         90.8           Warren County, IA         97.0         90.8           Warren County, IA         104.8         97.0           Butler County, KS         81.5         76.1           Douglas County, KS         99.1         93.7           Franklin County, KS         107.6         14           Harvey County, KS         104.9         103.1           Leavenworth County, KS         92.8         91.4           Jackson County, KS</td> <td>Dallas County, IA         87.0         76.2         10.8           Dubuque County, IA         102.0         101.7         0.3           Harrison County, IA         97.8         94.0         3.8           Jones County, IA         83.9         70.1         13.9           Linn County, IA         100.1         99.0         1.2           Madison County, IA         77.7         64.5         13.3           Mills County, IA         108.5         105.1         3.3           Polt County, IA         108.5         105.1         3.3           Pottawattamic County,         1         95.3         89.3         6.0           Scott County, IA         115.0         103.4         11.7           Story County, IA         97.0         90.8         6.2           Warren County, IA         97.0         90.8         6.2           Woodbury County, IA         72.4         70.0         2.4           Woodbury County, IA         104.8         97.0         7.8           Butler County, KS         99.1         93.7         5.4           Franklin County, KS         70.9         69.1         1.8           Jackson County, KS         107.6         7.2</td> <td>Dallas County, IA         87.0         76.2         10.8         87.1           Dubuque County, IA         102.0         101.7         0.3         108.2           Harrison County, IA         69.0         65.3         3.6         76.7           Johnson County, IA         87.8         94.0         3.8         102.6           Jones County, IA         83.9         70.1         13.9         81.6           Linn County, IA         100.1         99.0         1.2         106.0           Madison County, IA         81.6         68.2         13.4         81.0           Polk County, IA         81.6         68.2         13.4         81.0           Polk County, IA         108.5         105.1         3.3         110.9           Pottawattamie County, IA         95.3         89.3         6.0         99.6           Scott County, IA         115.0         103.4         11.7         109.5           Story County, IA         82.7         73.2         9.4         88.5           Washington County, IA         72.4         70.0         2.4         82.9           Woodbury County, IA         104.8         97.0         7.8         105.4           Butler County, KS</td> | Dallas County, IA         87.0         76.2           Dubuque County, IA         102.0         101.7           Harrison County, IA         69.0         65.3           Johnson County, IA         97.8         94.0           Jones County, IA         83.9         70.1           Linn County, IA         100.1         99.0           Madison County, IA         77.7         64.5           Mills County, IA         81.6         682.2           Polk County, IA         108.5         105.1           Pottawattamic County,         1         95.3         89.3           Scott County, IA         91.3         103.4           Story County, IA         97.0         90.8           Warren County, IA         97.0         90.8           Warren County, IA         97.0         90.8           Warren County, IA         104.8         97.0           Butler County, KS         81.5         76.1           Douglas County, KS         99.1         93.7           Franklin County, KS         107.6         14           Harvey County, KS         104.9         103.1           Leavenworth County, KS         92.8         91.4           Jackson County, KS | Dallas County, IA         87.0         76.2         10.8           Dubuque County, IA         102.0         101.7         0.3           Harrison County, IA         97.8         94.0         3.8           Jones County, IA         83.9         70.1         13.9           Linn County, IA         100.1         99.0         1.2           Madison County, IA         77.7         64.5         13.3           Mills County, IA         108.5         105.1         3.3           Polt County, IA         108.5         105.1         3.3           Pottawattamic County,         1         95.3         89.3         6.0           Scott County, IA         115.0         103.4         11.7           Story County, IA         97.0         90.8         6.2           Warren County, IA         97.0         90.8         6.2           Woodbury County, IA         72.4         70.0         2.4           Woodbury County, IA         104.8         97.0         7.8           Butler County, KS         99.1         93.7         5.4           Franklin County, KS         70.9         69.1         1.8           Jackson County, KS         107.6         7.2 | Dallas County, IA         87.0         76.2         10.8         87.1           Dubuque County, IA         102.0         101.7         0.3         108.2           Harrison County, IA         69.0         65.3         3.6         76.7           Johnson County, IA         87.8         94.0         3.8         102.6           Jones County, IA         83.9         70.1         13.9         81.6           Linn County, IA         100.1         99.0         1.2         106.0           Madison County, IA         81.6         68.2         13.4         81.0           Polk County, IA         81.6         68.2         13.4         81.0           Polk County, IA         108.5         105.1         3.3         110.9           Pottawattamie County, IA         95.3         89.3         6.0         99.6           Scott County, IA         115.0         103.4         11.7         109.5           Story County, IA         82.7         73.2         9.4         88.5           Washington County, IA         72.4         70.0         2.4         82.9           Woodbury County, IA         104.8         97.0         7.8         105.4           Butler County, KS |

| 21002 | Hardin County KV         | 95.9  | 85.7  | 10.3  | 92.4  | 2.6   |
|-------|--------------------------|-------|-------|-------|-------|-------|
| 21093 | Hardin County, KY        | 93.9  | 85.7  | 6.8   | 92.4  | 3.6   |
| 21101 | Henderson County, KY     |       |       |       |       | -1.1  |
| 21103 | Henry County, KY         | 89.9  | 75.0  | 14.9  | 87.5  | 2.4   |
| 21111 | Jefferson County, KY     | 118.4 | 112.4 | 5.9   | 115.9 | 2.4   |
| 21113 | Jessamine County, KY     | 94.9  | 87.0  | 7.9   | 91.3  | 3.6   |
| 21117 | Kenton County, KY        | 118.4 | 111.0 | 7.4   | 114.2 | 4.3   |
| 21123 | Larue County, KY         | 76.9  |       |       |       |       |
| 21163 | Meade County, KY         | 88.9  | 78.5  | 10.4  | 83.7  | 5.2   |
| 21179 | Nelson County, KY        | 90.0  | 78.4  | 11.6  | 84.5  | 5.5   |
| 21185 | Oldham County, KY        | 90.9  | 85.3  | 5.6   | 87.9  | 3.0   |
| 21209 | Scott County, KY         | 99.4  | 88.9  | 10.5  | 96.3  | 3.1   |
| 21211 | Shelby County, KY        | 94.7  | 85.4  | 9.3   | 92.1  | 2.6   |
| 21215 | Spencer County, KY       | 86.5  |       |       |       |       |
| 21227 | Warren County, KY        | 106.1 | 94.7  | 11.4  | 101.3 | 4.8   |
| 21239 | Woodford County, KY      | 91.2  | 82.5  | 8.7   | 89.0  | 2.2   |
| 22005 | Ascension Parish, LA     | 91.4  | 85.7  | 5.6   | 91.2  | 0.2   |
| 22015 | Bossier Parish, LA       | 94.9  | 93.7  | 1.2   | 100.0 | -5.1  |
| 22017 | Caddo Parish, LA         | 105.5 | 102.6 | 2.9   | 107.9 | -2.4  |
| 22019 | Calcasieu Parish, LA     | 95.4  | 94.0  | 1.3   | 101.5 | -6.2  |
| 22031 | De Soto Parish, LA       | 81.2  | 78.1  | 3.1   | 85.2  | -4.0  |
|       | East Baton Rouge Parish, |       |       |       |       |       |
| 22033 | LA                       | 110.9 | 106.1 | 4.8   | 111.0 | -0.1  |
| 22043 | Grant Parish, LA         | 76.4  |       |       |       |       |
| 22047 | Iberville Parish, LA     | 94.1  | 95.8  | -1.7  | 101.8 | -7.7  |
| 22051 | Jefferson Parish, LA     | 130.5 | 128.0 | 2.5   | 132.7 | -2.2  |
| 22055 | Lafayette Parish, LA     | 105.3 | 101.3 | 4.1   | 105.9 | -0.6  |
| 22057 | Lafourche Parish, LA     | 95.7  | 92.0  | 3.7   | 98.7  | -3.0  |
| 22063 | Livingston Parish, LA    | 87.5  | 80.6  | 6.9   | 87.1  | 0.4   |
| 22071 | Orleans Parish, LA       | 144.7 | 160.3 | -15.6 | 165.7 | -21.0 |
| 22073 | Ouachita Parish, LA      | 102.9 | 99.8  | 3.1   | 104.8 | -1.8  |
| 22075 | Plaquemines Parish, LA   | 92.2  | 86.4  | 5.9   | 92.6  | -0.3  |
| 22077 | Pointe Coupee Parish, LA | 83.2  | 79.0  | 4.2   | 86.4  | -3.2  |
| 22079 | Rapides Parish, LA       | 95.0  | 96.4  | -1.4  | 103.4 | -8.4  |
| 22087 | St. Bernard Parish, LA   | 112.5 | 116.5 | -4.0  | 119.9 | -7.4  |
| 22089 | St. Charles Parish, LA   | 100.6 | 88.8  | 11.9  | 95.8  | 4.8   |
|       | St. John the Baptist     |       |       |       |       |       |
| 22095 | Parish, LA               | 105.3 | 96.7  | 8.5   | 103.0 | 2.3   |
| 22099 | St. Martin Parish, LA    | 88.9  | 81.2  | 7.7   | 87.8  | 1.2   |
| 22103 | St. Tammany Parish, LA   | 103.8 | 96.3  | 7.6   | 100.5 | 3.4   |
| 22109 | Terrebonne Parish, LA    | 102.1 | 101.8 | 0.3   | 106.8 | -4.7  |
| 22105 | Union Parish, LA         | 75.6  | 67.1  | 8.5   | 76.8  | -1.2  |
|       | West Baton Rouge         | , 5.0 | 07.1  | 0.5   | , 0.0 | ±.£   |
| 22121 | Parish, LA               | 95.6  | 90.5  | 5.1   | 95.3  | 0.3   |
| 23001 | Androscoggin County,     | 96.0  | 90.7  | 5.3   | 95.9  | 0.1   |
| 23001 | And Uscuggin County,     | 90.0  | 90.7  | 5.5   | 30.9  | 0.1   |

|       | ME                      |       |       |      |       |      |
|-------|-------------------------|-------|-------|------|-------|------|
| 23005 | Cumberland County, ME   | 100.3 | 95.4  | 4.9  | 100.5 | -0.1 |
| 23019 | Penobscot County, ME    | 84.9  | 80.1  | 4.8  | 89.1  | -4.2 |
| 23023 | Sagadahoc County, ME    | 90.5  | 82.8  | 7.7  | 88.8  | 1.7  |
| 23031 | York County, ME         | 88.4  | 84.9  | 3.5  | 91.3  | -2.9 |
| 24001 | Allegany County, MD     | 106.7 | 98.9  | 7.7  | 103.1 | 3.6  |
|       | Anne Arundel County,    |       | 0010  |      |       | 0.0  |
| 24003 | MD                      | 115.6 | 109.3 | 6.3  | 113.3 | 2.3  |
| 24005 | Baltimore County, MD    | 121.6 | 109.3 | 12.3 | 113.4 | 8.2  |
| 24009 | Calvert County, MD      | 104.4 | 90.1  | 14.2 | 95.3  | 9.1  |
| 24013 | Carroll County, MD      | 97.1  | 81.5  | 15.6 | 86.4  | 10.6 |
| 24015 | Cecil County, MD        | 99.2  | 85.6  | 13.6 | 91.1  | 8.0  |
| 24017 | Charles County, MD      | 108.6 | 88.4  | 20.2 | 94.6  | 14.0 |
| 24021 | Frederick County, MD    | 103.1 | 85.5  | 17.6 | 92.2  | 10.9 |
| 24025 | Harford County, MD      | 105.8 | 91.6  | 14.2 | 97.6  | 8.3  |
| 24027 | Howard County, MD       | 113.7 | 94.7  | 19.0 | 98.9  | 14.8 |
| 24031 | Montgomery County, MD   | 122.7 | 116.8 | 5.9  | 120.8 | 2.0  |
|       | Prince George's County, |       |       |      |       |      |
| 24033 | MD                      | 125.4 | 114.7 | 10.7 | 120.5 | 4.9  |
|       | Queen Anne's County,    |       |       |      |       |      |
| 24035 | MD                      | 83.7  | 74.9  | 8.8  | 81.4  | 2.3  |
| 24039 | Somerset County, MD     | 99.4  | 83.7  | 15.7 | 89.8  | 9.6  |
| 24043 | Washington County, MD   | 99.1  | 92.7  | 6.4  | 98.7  | 0.4  |
| 24045 | Wicomico County, MD     | 106.7 | 92.2  | 14.5 | 98.0  | 8.8  |
| 24510 | Baltimore city, MD      | 179.6 | 182.0 | -2.4 | 187.6 | -8.1 |
| 25001 | Barnstable County, MA   | 102.2 | 96.6  | 5.6  | 100.0 | 2.2  |
| 25003 | Berkshire County, MA    | 97.6  | 86.9  | 10.7 | 93.6  | 4.0  |
| 25005 | Bristol County, MA      | 121.5 | 117.5 | 4.0  | 121.6 | -0.1 |
| 25009 | Essex County, MA        | 128.3 | 123.4 | 4.9  | 127.7 | 0.6  |
| 25011 | Franklin County, MA     | 91.5  | 83.5  | 8.0  | 90.0  | 1.5  |
| 25013 | Hampden County, MA      | 116.5 | 110.4 | 6.1  | 114.5 | 2.0  |
| 25015 | Hampshire County, MA    | 101.9 | 87.1  | 14.7 | 92.6  | 9.3  |
| 25017 | Middlesex County, MA    | 132.5 | 127.7 | 4.8  | 132.3 | 0.2  |
| 25021 | Norfolk County, MA      | 121.6 | 116.8 | 4.8  | 121.9 | -0.3 |
| 25023 | Plymouth County, MA     | 107.3 | 101.6 | 5.6  | 105.8 | 1.4  |
| 25025 | Suffolk County, MA      | 217.1 | 206.5 | 10.6 | 212.7 | 4.4  |
| 25027 | Worcester County, MA    | 107.4 | 100.4 | 7.0  | 105.8 | 1.6  |
| 26015 | Barry County, MI        | 79.8  | 68.9  | 10.8 | 76.5  | 3.3  |
| 26017 | Bay County, MI          | 96.5  | 92.5  | 4.0  | 100.2 | -3.7 |
| 26021 | Berrien County, MI      | 95.7  | 90.4  | 5.3  | 96.9  | -1.2 |
| 26025 | Calhoun County, MI      | 92.6  | 87.7  | 4.9  | 94.9  | -2.3 |
| 26027 | Cass County, MI         | 79.5  | 72.6  | 6.8  | 81.3  | -1.8 |
| 26037 | Clinton County, MI      | 75.3  | 61.7  | 13.6 | 72.0  | 3.3  |
| 26045 | Eaton County, MI        | 82.5  | 74.6  | 7.9  | 82.2  | 0.3  |

| 26049 | Genesee County, MI                         | 101.4 | 98.7  | 2.7        | 103.7 | -2.3  |
|-------|--------------------------------------------|-------|-------|------------|-------|-------|
| 26049 | Ingham County, MI                          | 101.4 | 103.5 | 6.9        | 103.7 | 0.2   |
| 26063 | Ionia County, MI                           | 82.2  | 73.0  | 9.2        | 82.3  | -0.2  |
| 26075 |                                            | 91.7  | 84.2  | 9.2<br>7.4 | 90.6  | -0.2  |
| 26075 | Jackson County, MI                         | 91.7  | 94.0  | 2.5        | 100.3 | -3.8  |
| 26081 | Kalamazoo County, MI<br>Kent County, MI    | 101.6 | 94.0  | 3.9        | 100.3 | -3.8  |
| 26081 |                                            | 76.4  | 68.8  | 7.6        | 76.1  |       |
| 26093 | Lapeer County, MI<br>Livingston County, MI | 88.5  | 80.9  | 7.6        | 86.8  | 0.3   |
| -     |                                            |       |       |            |       |       |
| 26099 | Macomb County, MI<br>Monroe County, MI     | 112.6 | 108.1 | 4.5<br>3.2 | 113.6 | -1.0  |
| 26115 | <b>,</b> .                                 | 83.9  | 80.6  |            | 87.9  | -4.1  |
| 26121 | Muskegon County, MI                        | 100.7 | 98.3  | 2.4        | 104.1 | -3.4  |
| 26123 | Newaygo County, MI                         | 80.2  | 65.3  | 14.9       | 74.6  | 5.6   |
| 26125 | Oakland County, MI                         | 108.3 | 106.2 | 2.1        | 111.2 | -2.8  |
| 26139 | Ottawa County, MI                          | 92.2  | 85.0  | 7.2        | 92.3  | -0.1  |
| 26145 | Saginaw County, MI                         | 96.9  | 93.6  | 3.2        | 101.5 | -4.7  |
| 26147 | St. Clair County, MI                       | 89.6  | 87.1  | 2.6        | 92.9  | -3.3  |
| 26159 | Van Buren County, MI                       | 77.1  | 72.3  | 4.7        | 80.1  | -3.1  |
| 26161 | Washtenaw County, MI                       | 102.8 | 100.2 | 2.6        | 106.1 | -3.3  |
| 26163 | Wayne County, MI                           | 126.3 | 126.6 | -0.3       | 132.0 | -5.7  |
| 27003 | Anoka County, MN                           | 106.7 | 96.9  | 9.8        | 100.5 | 6.2   |
| 27009 | Benton County, MN                          | 92.3  | 93.3  | -1.0       | 102.3 | -10.0 |
| 27013 | Blue Earth County, MN                      | 90.0  |       |            |       |       |
| 27017 | Carlton County, MN                         | 83.3  | 75.8  | 7.5        | 83.4  | -0.1  |
| 27019 | Carver County, MN                          | 98.4  | 84.3  | 14.1       | 90.0  | 8.4   |
| 27025 | Chisago County, MN                         | 84.0  | 77.0  | 7.0        | 83.6  | 0.5   |
| 27027 | Clay County, MN                            | 84.2  | 79.8  | 4.5        | 93.2  | -9.0  |
| 27037 | Dakota County, MN                          | 106.2 | 98.5  | 7.7        | 103.6 | 2.7   |
| 27039 | Dodge County, MN                           | 80.3  | 61.6  | 18.7       | 73.2  | 7.1   |
| 27053 | Hennepin County, MN                        | 123.7 | 124.0 | -0.3       | 128.0 | -4.3  |
| 27055 | Houston County, MN                         | 88.3  | 82.9  | 5.4        | 91.5  | -3.3  |
| 27059 | Isanti County, MN                          | 84.9  | 65.4  | 19.5       | 75.2  | 9.6   |
| 27103 | Nicollet County, MN                        | 93.8  |       |            |       |       |
| 27109 | Olmsted County, MN                         | 100.1 | 90.1  | 10.0       | 97.2  | 2.9   |
| 27119 | Polk County, MN                            | 61.1  |       |            |       |       |
| 27123 | Ramsey County, MN                          | 128.9 | 126.2 | 2.7        | 131.6 | -2.7  |
| 27137 | St. Louis County, MN                       | 93.1  | 92.6  | 0.5        | 99.3  | -6.2  |
| 27139 | Scott County, MN                           | 91.2  | 89.2  | 2.0        | 94.8  | -3.6  |
| 27141 | Sherburne County, MN                       | 84.3  | 76.9  | 7.4        | 83.1  | 1.2   |
| 27145 | Stearns County, MN                         | 94.2  | 85.9  | 8.3        | 94.2  | 0.0   |
| 27157 | Wabasha County, MN                         | 93.8  | 84.4  | 9.4        | 93.5  | 0.3   |
| 27163 | Washington County, MN                      | 109.1 | 97.6  | 11.5       | 101.5 | 7.5   |
| 27171 | Wright County, MN                          | 81.6  | 77.8  | 3.8        | 84.1  | -2.5  |
| 28029 | Copiah County, MS                          | 80.6  | 64.5  | 16.1       | 76.6  | 4.1   |
| 28033 | DeSoto County, MS                          | 89.1  | 80.2  | 8.9        | 86.3  | 2.7   |

| 28035 | Forrest County, MS                        | 99.0                  | 91.1         | 7.9  | 97.5  | 1.4  |
|-------|-------------------------------------------|-----------------------|--------------|------|-------|------|
| 28033 | George County, MS                         | 82.9                  | 63.7         | 19.2 | 73.5  | 9.4  |
| 28039 |                                           | 93.6                  | 84.9         | 8.7  | 90.2  | 3.4  |
| -     | Hancock County, MS<br>Harrison County, MS |                       |              | 7.7  |       |      |
| 28047 |                                           | <u>106.1</u><br>103.4 | 98.4<br>96.7 | 6.7  | 102.8 | 3.3  |
| 28049 | Hinds County, MS                          |                       |              |      | 102.7 | 0.7  |
| 28059 | Jackson County, MS                        | 100.5                 | 92.2         | 8.3  | 97.2  | 3.3  |
| 28073 | Lamar County, MS                          | 80.2                  | 66.5         | 13.7 | 74.1  | 6.1  |
| 28089 | Madison County, MS                        | 92.8                  | 76.7         | 16.1 | 85.4  | 7.4  |
| 28093 | Marshall County, MS                       | 84.7                  | 71.3         | 13.3 | 78.7  | 6.0  |
| 28121 | Rankin County, MS                         | 87.6                  | 79.2         | 8.4  | 86.3  | 1.3  |
| 28127 | Simpson County, MS                        | 83.3                  | 69.5         | 13.8 | 78.5  | 4.8  |
| 28131 | Stone County, MS                          | 84.6                  | 64.9         | 19.8 | 73.4  | 11.2 |
| 28137 | Tate County, MS                           | 87.1                  | 64.1         | 23.0 | 73.6  | 13.5 |
| 28143 | Tunica County, MS                         | 74.7                  | 65.5         | 9.2  | 74.9  | -0.1 |
| 29003 | Andrew County, MO                         | 77.4                  | 61.4         | 16.0 | 72.8  | 4.6  |
| 29013 | Bates County, MO                          | 84.6                  | 72.1         | 12.5 | 83.9  | 0.8  |
| 29019 | Boone County, MO                          | 103.6                 | 93.5         | 10.1 | 99.4  | 4.2  |
| 29021 | Buchanan County, MO                       | 115.7                 | 107.2        | 8.5  | 112.8 | 2.8  |
| 29027 | Callaway County, MO                       | 84.9                  | 71.6         | 13.4 | 79.8  | 5.1  |
|       | Cape Girardeau County,                    |                       |              |      |       |      |
| 29031 | МО                                        | 98.0                  |              |      |       |      |
| 29037 | Cass County, MO                           | 87.3                  | 80.5         | 6.9  | 88.5  | -1.2 |
| 29043 | Christian County, MO                      | 92.0                  | 79.9         | 12.1 | 87.2  | 4.8  |
| 29047 | Clay County, MO                           | 100.2                 | 97.3         | 2.9  | 103.0 | -2.9 |
| 29049 | Clinton County, MO                        | 88.7                  | 79.0         | 9.7  | 86.5  | 2.2  |
| 29051 | Cole County, MO                           | 89.4                  | 88.3         | 1.1  | 95.4  | -5.9 |
|       | Crawford County, MO                       |                       |              |      |       |      |
| 29055 | (pt.)*                                    | 82.6                  |              |      |       |      |
| 29071 | Franklin County, MO                       | 91.8                  | 82.2         | 9.6  | 87.9  | 3.9  |
| 29077 | Greene County, MO                         | 108.1                 | 96.1         | 12.0 | 101.6 | 6.5  |
| 29095 | Jackson County, MO                        | 115.1                 | 113.4        | 1.7  | 119.7 | -4.6 |
| 29097 | Jasper County, MO                         | 96.2                  | 95.8         | 0.4  | 101.3 | -5.1 |
| 29099 | Jefferson County, MO                      | 101.6                 | 94.5         | 7.1  | 98.2  | 3.4  |
| 29107 | Lafayette County, MO                      | 87.9                  | 80.8         | 7.1  | 89.5  | -1.6 |
| 29113 | Lincoln County, MO                        | 92.4                  | 78.7         | 13.7 | 86.3  | 6.0  |
| 29135 | Moniteau County, MO                       | 75.4                  | 70.8         | 4.6  | 80.4  | -5.0 |
| 29145 | Newton County, MO                         | 90.5                  | 76.9         | 13.6 | 87.7  | 2.7  |
| 29165 | Platte County, MO                         | 97.4                  | 88.6         | 8.8  | 94.7  | 2.6  |
| 29177 | Ray County, MO                            | 69.4                  | 70.5         | -1.1 | 79.2  | -9.8 |
| 29183 | St. Charles County, MO                    | 116.8                 | 108.6        | 8.2  | 113.7 | 3.1  |
| 29189 | St. Louis County, MO                      | 116.9                 | 121.0        | -4.1 | 124.2 | -7.3 |
| 29219 | Warren County, MO                         | 89.8                  | 77.8         | 12.0 | 83.8  | 6.0  |
| 29221 | Washington County, MO                     | 83.3                  | 76.7         | 6.6  | 83.8  | -0.5 |
| 29221 | Webster County, MO                        | 91.3                  | 69.4         | 21.9 | 79.9  | -0.5 |
| 29223 | webster county, wo                        | 91.3                  | 09.4         | 21.9 | 79.9  | 11.4 |

| 29510 | St. Louis city, MO      | 145.7 |       |      |       |       |
|-------|-------------------------|-------|-------|------|-------|-------|
| 30009 | Carbon County, MT       | 77.9  | 72.9  | 5.0  | 86.9  | -9.0  |
| 30013 | Cascade County, MT      | 101.9 | 99.6  | 2.4  | 106.0 | -4.0  |
| 30063 | Missoula County, MT     | 101.7 | 97.5  | 4.3  | 102.6 | -0.9  |
| 30111 | Yellowstone County, MT  | 103.5 | 99.8  | 3.6  | 105.4 | -1.9  |
| 31025 | Cass County, NE         | 84.7  | 70.4  | 14.3 | 81.2  | 3.5   |
| 31043 | Dakota County, NE       | 104.9 | 97.8  | 7.1  | 105.1 | -0.2  |
| 31055 | Douglas County, NE      | 122.1 | 120.9 | 1.2  | 124.5 | -2.4  |
| 31109 | Lancaster County, NE    | 112.1 | 106.9 | 5.2  | 112.8 | -0.7  |
| 31153 | Sarpy County, NE        | 113.6 | 101.4 | 12.2 | 107.0 | 6.6   |
| 31155 | Saunders County, NE     | 75.2  | 61.5  | 13.7 | 72.4  | 2.9   |
| 31159 | Seward County, NE       | 73.2  | 62.6  | 10.6 | 112.0 | -38.8 |
| 31177 | Washington County, NE   | 86.8  | 71.7  | 15.2 | 81.6  | 5.2   |
| 32003 | Clark County, NV        | 123.5 | 117.8 | 5.7  | 123.4 | 0.1   |
| 32031 | Washoe County, NV       | 106.6 | 103.0 | 3.6  | 113.4 | -6.8  |
| 32510 | Carson City, NV         | 112.6 | 111.2 | 1.3  | 120.0 | -7.5  |
| 33011 | Hillsborough County, NH | 103.8 | 102.3 | 1.5  | 106.8 | -3.0  |
| 33015 | Rockingham County, NH   | 90.4  | 87.0  | 3.3  | 92.3  | -2.0  |
| 33017 | Strafford County, NH    | 93.6  | 87.7  | 5.9  | 93.5  | 0.1   |
| 34001 | Atlantic County, NJ     | 112.9 | 112.2 | 0.7  | 116.7 | -3.8  |
| 34003 | Bergen County, NJ       | 140.1 | 138.8 | 1.3  | 142.1 | -2.0  |
| 34005 | Burlington County, NJ   | 104.1 | 101.4 | 2.7  | 106.6 | -2.5  |
| 34007 | Camden County, NJ       | 130.0 | 129.2 | 0.9  | 132.2 | -2.2  |
| 34009 | Cape May County, NJ     | 115.6 | 114.1 | 1.6  | 116.4 | -0.8  |
| 34011 | Cumberland County, NJ   | 101.2 | 93.1  | 8.1  | 99.0  | 2.2   |
| 34013 | Essex County, NJ        | 168.9 | 170.0 | -1.1 | 175.4 | -6.5  |
| 34015 | Gloucester County, NJ   | 105.6 | 102.5 | 3.1  | 106.2 | -0.5  |
| 34017 | Hudson County, NJ       | 228.8 | 225.1 | 3.7  | 230.1 | -1.3  |
| 34019 | Hunterdon County, NJ    | 87.0  | 80.6  | 6.4  | 85.3  | 1.7   |
| 34021 | Mercer County, NJ       | 123.8 | 121.4 | 2.4  | 124.9 | -1.1  |
| 34023 | Middlesex County, NJ    | 130.4 | 127.1 | 3.3  | 130.3 | 0.1   |
| 34025 | Monmouth County, NJ     | 117.5 | 113.5 | 4.0  | 116.6 | 0.9   |
| 34027 | Morris County, NJ       | 107.2 | 103.3 | 3.9  | 106.0 | 1.2   |
| 34029 | Ocean County, NJ        | 119.0 | 114.1 | 4.9  | 117.6 | 1.4   |
| 34031 | Passaic County, NJ      | 158.1 | 154.0 | 4.1  | 157.1 | 1.0   |
| 34033 | Salem County, NJ        | 94.0  | 88.1  | 5.9  | 94.1  | -0.1  |
| 34035 | Somerset County, NJ     | 106.1 | 98.1  | 8.0  | 102.0 | 4.1   |
| 34037 | Sussex County, NJ       | 95.0  | 92.2  | 2.8  | 95.9  | -0.8  |
| 34039 | Union County, NJ        | 151.0 | 146.8 | 4.2  | 150.7 | 0.3   |
| 34041 | Warren County, NJ       | 98.6  | 97.0  | 1.7  | 100.7 | -2.1  |
| 35001 | Bernalillo County, NM   | 120.2 | 116.3 | 3.9  | 117.7 | 2.5   |
| 35013 | Dona Ana County, NM     | 102.1 | 95.3  | 6.8  | 100.3 | 1.8   |
| 35043 | Sandoval County, NM     | 91.5  | 86.7  | 4.8  | 95.6  | -4.1  |
| 35045 | San Juan County, NM     | 84.0  | 76.8  | 7.2  | 84.5  | -0.5  |

| 35049          | Santa Fe County, NM    | 97.6           | 93.7           | 3.9        | 97.9           | -0.4         |
|----------------|------------------------|----------------|----------------|------------|----------------|--------------|
| 35043          | Valencia County, NM    | 86.8           | 82.8           | 3.9        | 86.9           | -0.4         |
| 36001          | Albany County, NY      | 111.2          | 106.5          | 4.8        | 111.8          | -0.1         |
| 36001          | Bronx County, NY       | 331.5          | 328.8          | 2.7        | 322.7          | 8.8          |
| 36003          | Broome County, NY      | 102.0          | 98.4           | 3.6        | 103.6          | -1.6         |
| 36015          | Chemung County, NY     | 99.9           | 98.4           | 2.8        | 103.0          | -3.3         |
| 36013          | Dutchess County, NY    | 99.9           | 87.2           | 6.8        | 92.2           | 1.8          |
| 36027          | Erie County, NY        | 107.6          | 108.8          | -1.1       | 114.9          | -7.2         |
| 36043          | Herkimer County, NY    | 88.5           | 85.4           | 3.2        | 92.5           | -7.2         |
| 36043          | Kings County, NY       | 341.4          | 341.3          | 0.1        | 341.5          | 0.0          |
| 36051          | Livingston County, NY  | 73.9           | 71.8           | 2.1        | 82.2           | -8.3         |
|                |                        |                | 71.8           | 4.2        |                | -8.3         |
| 36053          | Madison County, NY     | 77.8           |                |            | 80.4           |              |
| 36055<br>36059 | Monroe County, NY      | 107.5<br>144.2 | 105.5<br>143.4 | 2.0<br>0.9 | 110.2<br>149.4 | -2.7<br>-5.2 |
| 36059          | Nassau County, NY      |                |                |            |                |              |
|                | New York County, NY    | 463.9          | 459.5          | 4.4        | 478.8          | -14.9        |
| 36063          | Niagara County, NY     | 100.3          | 99.1           | 1.2<br>2.7 | 104.5          | -4.1         |
| 36065          | Oneida County, NY      | 96.8           | 94.2           |            | 98.5           | -1.6         |
| 36067          | Onondaga County, NY    | 106.9          | 103.3          | 3.6        | 107.8          | -0.9         |
| 36069          | Ontario County, NY     | 80.7           | 77.0           | 3.7        | 84.8           | -4.0         |
| 36071          | Orange County, NY      | 101.7          | 98.1           | 3.6        | 104.2          | -2.5         |
| 36073          | Orleans County, NY     | 73.7           | 76.1           | -2.5       | 85.1           | -11.4        |
| 36075          | Oswego County, NY      | 84.8           | 82.6           | 2.2        | 89.0           | -4.2         |
| 36079          | Putnam County, NY      | 95.1           | 93.2           | 1.8        | 96.6           | -1.6         |
| 36081          | Queens County, NY      | 272.1          | 269.1          | 2.9        | 272.6          | -0.5         |
| 36083          | Rensselaer County, NY  | 99.6           | 99.5           | 0.1        | 104.9          | -5.4         |
| 36085          | Richmond County, NY    | 190.1          | 188.2          | 1.9        | 188.4          | 1.7          |
| 36087          | Rockland County, NY    | 123.6          | 113.3          | 10.3       | 117.3          | 6.3          |
| 36091          | Saratoga County, NY    | 91.0           | 87.2           | 3.8        | 93.8           | -2.8         |
| 36093          | Schenectady County, NY | 111.8          | 109.9          | 1.9        | 115.4          | -3.6         |
| 36095          | Schoharie County, NY   | 75.9           | 77.2           | -1.3       | 85.5           | -9.6         |
| 36103          | Suffolk County, NY     | 113.7          | 111.2          | 2.6        | 115.5          | -1.8         |
| 36107          | Tioga County, NY       | 83.3           | 80.2           | 3.1        | 86.6           | -3.3         |
| 36109          | Tompkins County, NY    | 92.6           | 90.5           | 2.1        | 96.7           | -4.1         |
| 36111          | Ulster County, NY      | 92.5           | 88.8           | 3.8        | 94.0           | -1.4         |
| 36113          | Warren County, NY      | 94.2           | 92.1           | 2.1        | 97.5           | -3.2         |
| 36115          | Washington County, NY  | 78.0           | 75.1           | 2.9        | 83.7           | -5.7         |
| 36117          | Wayne County, NY       | 74.8           | 72.0           | 2.8        | 79.6           | -4.8         |
| 36119          | Westchester County, NY | 140.2          | 138.0          | 2.2        | 141.6          | -1.4         |
| 37001          | Alamance County, NC    | 97.5           | 88.9           | 8.6        | 94.0           | 3.6          |
| 37003          | Alexander County, NC   | 73.6           | 72.3           | 1.3        | 78.8           | -5.1         |
| 37007          | Anson County, NC       | 67.9           | 64.0           | 4.0        | 72.7           | -4.8         |
| 37019          | Brunswick County, NC   | 84.8           | 79.7           | 5.1        | 84.9           | -0.1         |
| 37021          | Buncombe County, NC    | 97.8           | 93.6           | 4.2        | 98.4           | -0.6         |
| 37023          | Burke County, NC       | 82.8           | 82.8           | 0.1        | 87.4           | -4.6         |

| 37025          | Cabarrus County, NC                    | 94.2  | 88.5         | 5.7               | 93.6         | 0.6          |
|----------------|----------------------------------------|-------|--------------|-------------------|--------------|--------------|
| 37023          | Caldwell County, NC                    | 86.8  | 86.1         | 0.7               | 90.8         | -4.0         |
| 37035          | Catawba County, NC                     | 92.1  | 90.0         | 2.1               | 93.9         | -1.9         |
| 37033          | Chatham County, NC                     | 75.2  | 73.1         | 2.1               | 79.6         | -4.4         |
| 37051          | Cumberland County, NC                  | 99.7  | 96.8         | 2.1               | 102.3        | -4.4         |
| 37051          | Currituck County, NC                   | 87.0  | 50.8         | 2.5               | 102.5        | -2.7         |
| 37053          | Davie County, NC                       | 76.1  | 68.0         | 8.1               | 75.4         | 0.7          |
| 37053          | Durham County, NC                      | 105.5 | 99.5         | 6.0               | 104.0        | 1.5          |
| 37065          | Edgecombe County, NC                   | 85.2  | 85.8         | -0.6              | 91.7         | -6.5         |
| 37067          | Forsyth County, NC                     | 98.7  | 95.9         | 2.8               | 101.2        | -0.5         |
| 37069          | Franklin County, NC                    | 78.3  | 73.5         | 4.8               | 80.9         | -2.6         |
| -              |                                        | 96.3  |              | <u>4.0</u><br>3.7 |              |              |
| 37071<br>37079 | Gaston County, NC<br>Greene County, NC | 63.3  | 92.6<br>60.3 | 3.7               | 97.2<br>70.2 | -0.9<br>-6.9 |
| 37079          |                                        |       |              |                   |              |              |
|                | Guilford County, NC                    | 101.6 | 96.9         | 4.6               | 101.8        | -0.2         |
| 37087          | Haywood County, NC                     | 95.4  | 95.5         | -0.1              | 99.5         | -4.1         |
| 37089          | Henderson County, NC                   | 93.7  | 92.6         | 1.1               | 96.5         | -2.9         |
| 37093          | Hoke County, NC                        | 78.3  | 76.2         | 2.1               | 82.8         | -4.5         |
| 37101          | Johnston County, NC                    | 77.7  | 78.1         | -0.4              | 84.0         | -6.3         |
| 37115          | Madison County, NC                     | 93.1  | 92.4         | 0.8               | 99.6         | -6.4         |
| 37119          | Mecklenburg County, NC                 | 107.0 | 97.4         | 9.6               | 101.7        | 5.3          |
| 37127          | Nash County, NC                        | 83.2  | 81.1         | 2.1               | 87.8         | -4.5         |
| 37129          | New Hanover County, NC                 | 113.3 | 106.0        | 7.3               | 108.7        | 4.6          |
| 37133          | Onslow County, NC                      | 90.2  | 91.2         | -1.0              | 96.4         | -6.2         |
| 37135          | Orange County, NC                      | 91.5  | 85.8         | 5.6               | 90.7         | 0.8          |
| 37141          | Pender County, NC                      | 75.5  | 71.3         | 4.3               | 79.5         | -4.0         |
| 37145          | Person County, NC                      | 74.8  | 73.3         | 1.5               | 80.6         | -5.8         |
| 37147          | Pitt County, NC                        | 95.1  | 93.9         | 1.2               | 98.7         | -3.6         |
| 37151          | Randolph County, NC                    | 75.4  | 75.5         | 0.0               | 81.5         | -6.1         |
| 37157          | Rockingham County, NC                  | 82.7  | 81.6         | 1.1               | 87.4         | -4.7         |
| 37169          | Stokes County, NC                      | 78.4  | 67.7         | 10.7              | 75.9         | 2.5          |
| 37179          | Union County, NC                       | 91.8  | 73.8         | 17.9              | 80.4         | 11.4         |
| 37183          | Wake County, NC                        | 103.6 | 96.6         | 7.0               | 100.3        | 3.3          |
| 37191          | Wayne County, NC                       | 88.4  | 86.7         | 1.7               | 92.9         | -4.5         |
| 37197          | Yadkin County, NC                      | 69.7  | 65.1         | 4.6               | 73.9         | -4.1         |
| 38015          | Burleigh County, ND                    | 92.6  | 85.1         | 7.5               | 93.5         | -0.9         |
| 38017          | Cass County, ND                        | 95.6  | 76.8         | 18.8              | 89.4         | 6.2          |
| 38035          | Grand Forks County, ND                 | 92.3  | 78.0         | 14.3              | 90.8         | 1.6          |
| 38059          | Morton County, ND                      | 85.0  | 80.3         | 4.7               | 89.4         | -4.4         |
| 39003          | Allen County, OH                       | 104.8 | 89.5         | 15.3              | 96.4         | 8.5          |
| 39013          | Belmont County, OH                     | 103.6 | 93.8         | 9.8               | 100.7        | 2.9          |
| 39015          | Brown County, OH                       | 82.0  | 75.7         | 6.3               | 83.5         | -1.5         |
| 39017          | Butler County, OH                      | 103.9 | 101.2        | 2.8               | 108.1        | -4.1         |
| 39019          | Carroll County, OH                     | 76.0  | 75.0         | 1.0               | 83.8         | -7.9         |
| 39023          | Clark County, OH                       | 100.8 | 95.0         | 5.8               | 100.9        | -0.2         |

| 39025 | Clermont County, OH                      | 95.6  | 86.9  | 8.7      | 91.6  | 4.0   |
|-------|------------------------------------------|-------|-------|----------|-------|-------|
| 39035 | Cuyahoga County, OH                      | 114.5 | 119.6 | -5.1     | 125.5 | -11.0 |
| 39041 | Delaware County, OH                      | 95.7  | 79.9  | 15.8     | 86.3  | 9.4   |
| 39041 | Erie County, OH                          | 101.1 | 94.0  | 7.0      | 99.4  | 1.7   |
| 39045 | Fairfield County, OH                     | 93.0  | 84.7  | 8.4      | 99.4  | 2.8   |
| 39043 | Franklin County, OH                      | 123.2 | 119.5 | 3.8      | 123.5 | -0.3  |
| 39049 | Fulton County, OH                        | 88.4  | 62.7  | 25.7     | 71.8  | 16.6  |
| 39051 | Geauga County, OH                        | 70.0  | 60.1  | 10.0     | 67.6  | 2.4   |
| 39055 |                                          | 97.7  | 89.2  | 8.5      | 95.8  | 1.9   |
| 39057 | Greene County, OH<br>Hamilton County, OH | 116.5 | 115.3 | <u> </u> | 119.1 | -2.6  |
|       |                                          |       |       |          |       |       |
| 39081 | Jefferson County, OH                     | 104.0 | 99.7  | 4.3      | 105.9 | -1.9  |
| 39085 | Lake County, OH                          | 100.4 | 96.2  | 4.2      | 101.8 | -1.4  |
| 39087 | Lawrence County, OH                      | 99.3  | 96.1  | 3.2      | 101.6 | -2.3  |
| 39089 | Licking County, OH                       | 102.4 | 83.3  | 19.2     | 89.0  | 13.5  |
| 39093 | Lorain County, OH                        | 98.2  | 93.2  | 4.9      | 99.7  | -1.6  |
| 39095 | Lucas County, OH                         | 113.3 | 112.8 | 0.6      | 117.2 | -3.8  |
| 39097 | Madison County, OH                       | 86.3  | 79.9  | 6.4      | 87.7  | -1.4  |
| 39099 | Mahoning County, OH                      | 101.7 | 97.2  | 4.6      | 103.2 | -1.5  |
| 39103 | Medina County, OH                        | 78.3  | 74.7  | 3.6      | 81.1  | -2.8  |
| 39109 | Miami County, OH                         | 91.1  | 84.9  | 6.2      | 91.5  | -0.5  |
| 39113 | Montgomery County, OH                    | 111.3 | 109.1 | 2.1      | 113.9 | -2.6  |
| 39117 | Morrow County, OH                        | 63.4  | 61.3  | 2.1      | 71.2  | -7.8  |
| 39123 | Ottawa County, OH                        | 92.3  | 88.4  | 3.9      | 93.7  | -1.5  |
| 39129 | Pickaway County, OH                      | 86.9  | 82.0  | 4.9      | 89.6  | -2.7  |
| 39133 | Portage County, OH                       | 99.7  | 82.1  | 17.6     | 88.7  | 11.0  |
| 39135 | Preble County, OH                        | 91.9  | 72.4  | 19.5     | 81.1  | 10.8  |
| 39139 | Richland County, OH                      | 99.5  | 84.5  | 15.0     | 90.7  | 8.8   |
| 39151 | Stark County, OH                         | 108.5 | 106.5 | 2.0      | 111.3 | -2.8  |
| 39153 | Summit County, OH                        | 108.4 | 107.2 | 1.3      | 111.8 | -3.4  |
| 39155 | Trumbull County, OH                      | 95.8  | 92.4  | 3.4      | 98.1  | -2.3  |
| 39159 | Union County, OH                         | 92.6  | 76.1  | 16.6     | 84.5  | 8.1   |
| 39165 | Warren County, OH                        | 96.9  | 89.2  | 7.8      | 94.2  | 2.7   |
| 39167 | Washington County, OH                    | 90.2  | 83.8  | 6.5      | 91.0  | -0.8  |
| 39173 | Wood County, OH                          | 88.5  | 81.4  | 7.1      | 89.2  | -0.7  |
| 40017 | Canadian County, OK                      | 94.8  | 77.2  | 17.7     | 86.9  | 7.9   |
| 40027 | Cleveland County, OK                     | 106.3 | 94.3  | 12.0     | 100.1 | 6.2   |
| 40031 | Comanche County, OK                      | 104.0 | 94.2  | 9.8      | 102.5 | 1.5   |
| 40037 | Creek County, OK                         | 94.3  | 88.6  | 5.7      | 95.4  | -1.1  |
| 40051 | Grady County, OK                         | 87.9  | 78.4  | 9.6      | 89.1  | -1.2  |
| 40079 | Le Flore County, OK                      | 88.9  | 81.8  | 7.1      | 90.0  | -1.1  |
| 40083 | Logan County, OK                         | 84.6  | 76.9  | 7.7      | 85.5  | -0.9  |
| 40087 | McClain County, OK                       | 83.1  | 76.2  | 6.9      | 84.5  | -1.4  |
| 40109 | Oklahoma County, OK                      | 111.9 | 107.2 | 4.6      | 111.4 | 0.5   |
| 40111 | Okmulgee County, OK                      | 93.3  | 86.1  | 7.2      | 92.8  | 0.4   |

| 40113 | Osage County, OK        | 97.1  | 95.9  | 1.2  | 104.3 | -7.1 |
|-------|-------------------------|-------|-------|------|-------|------|
| 40117 | Pawnee County, OK       | 87.8  | 79.4  | 8.4  | 88.8  | -1.0 |
| 40131 | Rogers County, OK       | 93.7  | 84.9  | 8.9  | 91.0  | 2.7  |
| 40135 | Sequoyah County, OK     | 92.0  | 79.7  | 12.4 | 88.1  | 3.9  |
| 40133 | Tulsa County, OK        | 110.5 | 109.6 | 0.9  | 113.6 | -3.1 |
| 40145 | Wagoner County, OK      | 95.3  | 86.4  | 8.9  | 93.2  | 2.1  |
| 41003 | Benton County, OR       | 99.2  | 97.6  | 1.6  | 105.7 | -6.5 |
| 41005 | Clackamas County, OR    | 103.6 | 98.1  | 5.4  | 103.8 | -0.3 |
| 41009 | Columbia County, OR     | 90.1  | 86.8  | 3.3  | 95.8  | -5.7 |
| 41017 | Deschutes County, OR    | 86.7  | 77.1  | 9.5  | 85.5  | 1.2  |
| 41029 | Jackson County, OR      | 96.8  | 90.1  | 6.7  | 96.2  | 0.5  |
| 41039 | Lane County, OR         | 104.1 | 99.2  | 4.9  | 106.0 | -1.9 |
| 41047 | Marion County, OR       | 106.1 | 99.9  | 6.2  | 105.8 | 0.2  |
| 41051 | Multnomah County, OR    | 138.5 | 134.4 | 4.1  | 140.8 | -2.3 |
| 41053 | Polk County, OR         | 91.5  | 87.0  | 4.5  | 95.4  | -3.9 |
| 41067 | Washington County, OR   | 115.9 | 109.1 | 6.7  | 114.7 | 1.1  |
| 41071 | Yamhill County, OR      | 97.1  | 94.5  | 2.7  | 104.0 | -6.9 |
| 42003 | Allegheny County, PA    | 125.3 | 124.4 | 0.8  | 128.1 | -2.9 |
| 42005 | Armstrong County, PA    | 88.9  | 85.8  | 3.1  | 93.0  | -4.1 |
| 42007 | Beaver County, PA       | 103.0 | 105.4 | -2.4 | 109.7 | -6.8 |
| 42011 | Berks County, PA        | 116.5 | 108.3 | 8.2  | 113.4 | 3.1  |
| 42013 | Blair County, PA        | 111.2 | 110.0 | 1.1  | 115.4 | -4.2 |
| 42017 | Bucks County, PA        | 105.9 | 100.8 | 5.1  | 105.3 | 0.6  |
| 42019 | Butler County, PA       | 87.0  | 85.2  | 1.8  | 91.0  | -4.0 |
| 42021 | Cambria County, PA      | 105.7 | 105.3 | 0.4  | 109.4 | -3.7 |
| 42025 | Carbon County, PA       | 95.2  | 93.3  | 1.9  | 97.6  | -2.4 |
| 42027 | Centre County, PA       | 109.1 | 101.4 | 7.7  | 108.2 | 1.0  |
| 42029 | Chester County, PA      | 96.7  | 90.1  | 6.5  | 94.4  | 2.3  |
| 42041 | Cumberland County, PA   | 109.3 | 97.0  | 12.3 | 102.4 | 6.9  |
| 42043 | Dauphin County, PA      | 116.1 | 115.2 | 0.9  | 120.3 | -4.2 |
| 42045 | Delaware County, PA     | 132.5 | 131.9 | 0.6  | 135.0 | -2.6 |
| 42049 | Erie County, PA         | 103.0 | 99.8  | 3.2  | 104.7 | -1.6 |
| 42051 | Fayette County, PA      | 101.2 | 96.4  | 4.8  | 103.4 | -2.2 |
| 42069 | Lackawanna County, PA   | 114.8 | 113.9 | 0.9  | 116.0 | -1.2 |
| 42071 | Lancaster County, PA    | 103.5 | 94.8  | 8.7  | 100.4 | 3.1  |
| 42075 | Lebanon County, PA      | 105.8 | 101.6 | 4.1  | 106.8 | -1.0 |
| 42077 | Lehigh County, PA       | 127.5 | 124.0 | 3.5  | 126.9 | 0.5  |
| 42079 | Luzerne County, PA      | 108.5 | 107.6 | 0.9  | 112.1 | -3.5 |
| 42081 | Lycoming County, PA     | 105.0 | 96.0  | 9.0  | 102.7 | 2.3  |
| 42085 | Mercer County, PA       | 91.0  | 87.1  | 3.9  | 93.7  | -2.7 |
| 42091 | Montgomery County, PA   | 112.1 | 108.4 | 3.6  | 113.4 | -1.3 |
| 42095 | Northampton County, PA  | 115.9 | 112.0 | 3.8  | 116.4 | -0.5 |
| 42099 | Perry County, PA        | 83.2  | 80.3  | 2.9  | 86.9  | -3.7 |
| 42101 | Philadelphia County, PA | 216.8 | 217.1 | -0.4 | 225.0 | -8.2 |

| 42103 | Pike County, PA        | 91.2  | 84.2  | 7.0  | 88.0  | 3.1  |
|-------|------------------------|-------|-------|------|-------|------|
| 42125 | Washington County, PA  | 98.1  | 99.3  | -1.2 | 105.8 | -7.8 |
|       | Westmoreland County,   |       |       |      |       |      |
| 42129 | PA                     | 103.9 | 100.4 | 3.5  | 104.9 | -1.0 |
| 42131 | Wyoming County, PA     | 84.2  | 74.7  | 9.5  | 83.5  | 0.7  |
| 42133 | York County, PA        | 101.2 | 95.0  | 6.2  | 100.3 | 0.9  |
| 44001 | Bristol County, RI     | 124.8 | 121.7 | 3.1  | 125.3 | -0.5 |
| 44003 | Kent County, RI        | 117.9 | 116.9 | 0.9  | 121.7 | -3.9 |
| 44005 | Newport County, RI     | 111.1 | 108.1 | 3.0  | 111.0 | 0.0  |
| 44007 | Providence County, RI  | 137.5 | 136.5 | 1.0  | 141.5 | -4.0 |
| 44009 | Washington County, RI  | 98.2  | 91.4  | 6.8  | 96.8  | 1.4  |
| 45003 | Aiken County, SC       | 92.3  | 85.3  | 7.0  | 90.3  | 2.0  |
| 45007 | Anderson County, SC    | 86.4  | 80.4  | 6.0  | 85.8  | 0.6  |
| 45015 | Berkeley County, SC    | 93.9  | 88.9  | 5.1  | 95.0  | -1.0 |
| 45019 | Charleston County, SC  | 113.6 | 111.5 | 2.1  | 115.3 | -1.6 |
| 45031 | Darlington County, SC  | 81.6  | 82.9  | -1.4 | 88.3  | -6.7 |
| 45035 | Dorchester County, SC  | 98.1  | 87.0  | 11.2 | 92.8  | 5.3  |
| 45037 | Edgefield County, SC   | 75.5  |       |      |       |      |
| 45039 | Fairfield County, SC   | 78.2  | 77.6  | 0.6  | 84.8  | -6.6 |
| 45041 | Florence County, SC    | 88.6  | 84.5  | 4.1  | 91.0  | -2.4 |
| 45045 | Greenville County, SC  | 97.2  | 93.9  | 3.2  | 98.9  | -1.8 |
| 45051 | Horry County, SC       | 96.5  | 92.1  | 4.5  | 97.8  | -1.3 |
| 45055 | Kershaw County, SC     | 72.8  | 73.1  | -0.3 | 79.0  | -6.2 |
| 45059 | Laurens County, SC     | 82.7  | 77.2  | 5.4  | 84.3  | -1.6 |
| 45063 | Lexington County, SC   | 89.9  | 85.2  | 4.7  | 90.6  | -0.7 |
| 45077 | Pickens County, SC     | 86.9  | 82.9  | 4.0  | 87.8  | -0.9 |
| 45079 | Richland County, SC    | 107.2 | 102.0 | 5.2  | 106.6 | 0.6  |
| 45083 | Spartanburg County, SC | 91.8  | 85.8  | 6.0  | 90.7  | 1.1  |
| 45085 | Sumter County, SC      | 90.3  | 84.9  | 5.4  | 90.0  | 0.3  |
| 45091 | York County, SC        | 88.9  | 83.0  | 5.9  | 88.1  | 0.8  |
| 46083 | Lincoln County, SD     | 81.5  |       |      |       |      |
| 46093 | Meade County, SD       | 89.1  | 85.9  | 3.2  | 91.3  | -2.2 |
| 46099 | Minnehaha County, SD   | 102.9 | 100.0 | 2.9  | 106.6 | -3.7 |
| 46103 | Pennington County, SD  | 95.5  | 94.1  | 1.4  | 99.5  | -3.9 |
| 47001 | Anderson County, TN    | 92.0  | 88.8  | 3.3  | 94.1  | -2.1 |
| 47009 | Blount County, TN      | 94.4  | 89.3  | 5.1  | 93.4  | 1.1  |
| 47011 | Bradley County, TN     | 94.4  | 90.3  | 4.1  | 95.9  | -1.5 |
| 47019 | Carter County, TN      | 97.3  | 97.3  | 0.0  | 102.2 | -4.8 |
| 47021 | Cheatham County, TN    | 80.6  | 74.5  | 6.1  | 79.0  | 1.5  |
| 47023 | Chester County, TN     | 65.4  | 58.6  | 6.7  | 68.4  | -3.1 |
| 47037 | Davidson County, TN    | 112.1 | 102.6 | 9.5  | 106.1 | 5.9  |
| 47043 | Dickson County, TN     | 83.4  | 78.2  | 5.2  | 85.4  | -2.0 |
| 47047 | Fayette County, TN     | 70.7  |       |      |       |      |
| 47057 | Grainger County, TN    | 80.5  | 76.3  | 4.2  | 84.5  | -4.0 |

| 17000 |                       |       | 05.0  | 2.4  | 00 F  |      |
|-------|-----------------------|-------|-------|------|-------|------|
| 47063 | Hamblen County, TN    | 98.4  | 95.0  | 3.4  | 99.5  | -1.1 |
| 47065 | Hamilton County, TN   | 103.8 | 99.8  | 4.0  | 104.5 | -0.7 |
| 47073 | Hawkins County, TN    | 86.0  | 85.0  | 1.0  | 90.8  | -4.8 |
| 47089 | Jefferson County, TN  | 86.6  | 81.0  | 5.6  | 86.4  | 0.2  |
| 47093 | Knox County, TN       | 100.8 | 99.0  | 1.8  | 103.9 | -3.1 |
| 47105 | Loudon County, TN     | 93.3  | 84.7  | 8.7  | 90.2  | 3.1  |
| 47111 | Macon County, TN      | 68.3  |       |      |       |      |
| 47113 | Madison County, TN    | 91.0  | 79.6  | 11.5 | 87.6  | 3.5  |
| 47115 | Marion County, TN     | 84.8  |       |      |       |      |
| 47125 | Montgomery County, TN | 89.3  | 83.9  | 5.4  | 90.2  | -0.9 |
| 47147 | Robertson County, TN  | 77.7  | 72.8  | 4.9  | 82.5  | -4.8 |
| 47149 | Rutherford County, TN | 93.6  | 84.4  | 9.1  | 89.6  | 3.9  |
| 47153 | Sequatchie County, TN | 72.3  |       |      |       |      |
| 47157 | Shelby County, TN     | 111.6 | 105.2 | 6.4  | 109.7 | 2.0  |
| 47159 | Smith County, TN      | 82.9  | 81.7  | 1.2  | 89.5  | -6.6 |
| 47163 | Sullivan County, TN   | 97.8  | 93.1  | 4.7  | 97.3  | 0.5  |
| 47165 | Sumner County, TN     | 91.3  | 86.2  | 5.1  | 91.5  | -0.2 |
| 47167 | Tipton County, TN     | 79.8  | 75.7  | 4.1  | 81.8  | -1.9 |
| 47169 | Trousdale County, TN  | 76.4  | 73.9  | 2.5  | 81.2  | -4.8 |
| 47171 | Unicoi County, TN     | 106.3 | 103.5 | 2.8  | 108.1 | -1.8 |
| 47173 | Union County, TN      | 82.7  | 81.2  | 1.5  | 88.5  | -5.8 |
| 47179 | Washington County, TN | 96.5  | 92.2  | 4.3  | 96.4  | 0.1  |
| 47187 | Williamson County, TN | 94.7  | 81.8  | 12.8 | 87.4  | 7.3  |
| 47189 | Wilson County, TN     | 83.8  | 77.3  | 6.5  | 82.7  | 1.1  |
| 48007 | Aransas County, TX    | 101.2 | 100.9 | 0.2  | 104.4 | -3.2 |
| 48013 | Atascosa County, TX   | 87.2  | 85.3  | 1.8  | 93.4  | -6.3 |
| 48015 | Austin County, TX     | 82.8  |       |      |       |      |
| 48019 | Bandera County, TX    | 85.6  | 80.7  | 4.9  | 85.9  | -0.2 |
| 48021 | Bastrop County, TX    | 88.3  | 86.8  | 1.6  | 92.4  | -4.0 |
| 48027 | Bell County, TX       | 106.8 | 99.8  | 7.1  | 105.0 | 1.8  |
| 48029 | Bexar County, TX      | 117.6 | 113.9 | 3.7  | 118.8 | -1.3 |
| 48037 | Bowie County, TX      | 92.9  | 89.5  | 3.4  | 95.3  | -2.4 |
| 48039 | Brazoria County, TX   | 99.2  | 95.7  | 3.5  | 99.8  | -0.6 |
| 48041 | Brazos County, TX     | 110.1 | 106.7 | 3.5  | 110.9 | -0.8 |
| 48051 | Burleson County, TX   | 90.5  | 83.6  | 6.8  | 89.8  | 0.7  |
| 48055 | Caldwell County, TX   | 88.1  | 82.2  | 5.9  | 90.6  | -2.5 |
| 48057 | Calhoun County, TX    | 108.0 | 98.5  | 9.5  | 103.9 | 4.1  |
| 48061 | Cameron County, TX    | 107.4 | 101.1 | 6.3  | 107.9 | -0.5 |
| 48071 | Chambers County, TX   | 84.1  | 85.7  | -1.6 | 91.1  | -6.9 |
| 48077 | Clay County, TX       | 82.5  | 75.5  | 7.0  | 82.9  | -0.4 |
| 48085 | Collin County, TX     | 116.4 | 101.4 | 15.0 | 106.3 | 10.1 |
| 48091 | Comal County, TX      | 94.1  | 91.3  | 2.8  | 96.7  | -2.6 |
| 48099 | Coryell County, TX    | 95.4  | 92.6  | 2.8  | 100.4 | -5.0 |
| 48113 | Dallas County, TX     | 126.9 | 119.4 | 7.5  | 122.9 | 4.0  |

| 48119 | Delta County, TX        | 92.3          | 88.4                 | 3.8   | 97.3  | -5.1  |
|-------|-------------------------|---------------|----------------------|-------|-------|-------|
| 48113 | Denton County, TX       | 115.1         | 99.2                 | 15.8  | 103.6 | 11.4  |
| 48135 | Ector County, TX        | 113.1         | 100.3                | 1.6   | 103.0 | -1.3  |
| 48133 | Ellis County, TX        | 94.8          | 87.3                 | 7.5   | 92.6  | 2.2   |
| 48141 | El Paso County, TX      | 94.8<br>118.1 | 112.8                | 5.3   | 116.2 | 1.9   |
| 48157 |                         |               |                      | 12.4  |       | 7.7   |
|       | Fort Bend County, TX    | 113.4         | 101.0                |       | 105.7 |       |
| 48167 | Galveston County, TX    | 115.7         | <u>111.1</u><br>92.3 | 4.6   | 114.2 | 1.5   |
| 48181 | Grayson County, TX      | 93.9          |                      | 1.6   | 97.8  | -3.9  |
| 48183 | Gregg County, TX        | 99.4          | 95.1                 | 4.3   | 100.0 | -0.6  |
| 48187 | Guadalupe County, TX    | 98.0          | 88.2                 | 9.8   | 95.6  | 2.5   |
| 48199 | Hardin County, TX       | 83.4          | 77.9                 | 5.4   | 84.0  | -0.6  |
| 48201 | Harris County, TX       | 126.4         | 116.2                | 10.3  | 120.4 | 6.1   |
| 48209 | Hays County, TX         | 93.6          | 88.6                 | 4.9   | 92.7  | 0.9   |
| 48215 | Hidalgo County, TX      | 106.1         | 98.8                 | 7.3   | 105.7 | 0.5   |
| 48231 | Hunt County, TX         | 91.7          | 86.4                 | 5.3   | 92.4  | -0.7  |
| 48245 | Jefferson County, TX    | 114.8         | 111.6                | 3.2   | 115.6 | -0.8  |
| 48251 | Johnson County, TX      | 93.7          | 88.8                 | 4.9   | 94.0  | -0.4  |
| 48257 | Kaufman County, TX      | 95.4          | 85.6                 | 9.8   | 92.8  | 2.6   |
| 48259 | Kendall County, TX      | 87.5          | 97.5                 | -10.0 | 101.9 | -14.4 |
| 48281 | Lampasas County, TX     | 85.4          | 85.9                 | -0.5  | 91.5  | -6.1  |
| 48291 | Liberty County, TX      | 82.0          | 82.8                 | -0.8  | 88.6  | -6.6  |
| 48303 | Lubbock County, TX      | 106.0         | 104.7                | 1.3   | 111.3 | -5.2  |
| 48309 | McLennan County, TX     | 101.8         | 99.6                 | 2.2   | 106.4 | -4.6  |
| 48325 | Medina County, TX       | 81.2          |                      |       |       |       |
| 48329 | Midland County, TX      | 109.3         | 109.9                | -0.6  | 113.7 | -4.4  |
| 48339 | Montgomery County, TX   | 91.9          | 87.0                 | 4.9   | 91.8  | 0.1   |
| 48355 | Nueces County, TX       | 112.8         | 109.8                | 3.1   | 114.9 | -2.0  |
| 48361 | Orange County, TX       | 97.3          | 93.2                 | 4.0   | 97.4  | -0.1  |
| 48367 | Parker County, TX       | 83.6          | 79.1                 | 4.4   | 84.6  | -1.0  |
| 48375 | Potter County, TX       | 110.2         | 108.3                | 1.9   | 111.7 | -1.5  |
| 48381 | Randall County, TX      | 104.8         | 105.9                | -1.1  | 111.6 | -6.8  |
| 48397 | Rockwall County, TX     | 98.8          | 90.2                 | 8.7   | 95.1  | 3.8   |
| 48401 | Rusk County, TX         | 75.3          | 72.1                 | 3.1   | 79.2  | -3.9  |
| 48409 | San Patricio County, TX | 94.2          | 92.0                 | 2.2   | 97.1  | -2.8  |
| 48423 | Smith County, TX        | 99.5          | 93.4                 | 6.1   | 98.7  | 0.8   |
| 48439 | Tarrant County, TX      | 120.0         | 113.0                | 7.0   | 116.3 | 3.7   |
| 48451 | Tom Green County, TX    | 97.3          | 91.3                 | 6.0   | 98.5  | -1.2  |
| 48453 | Travis County, TX       | 114.6         | 109.6                | 5.0   | 112.6 | 2.0   |
| 48459 | Upshur County, TX       | 81.0          | 73.1                 | 7.8   | 81.2  | -0.3  |
| 48469 | Victoria County, TX     | 102.3         | 103.0                | -0.7  | 108.3 | -6.0  |
| 48473 | Waller County, TX       | 99.8          | 94.2                 | 5.6   | 98.6  | 1.2   |
| 48479 | Webb County, TX         | 105.9         | 103.8                | 2.0   | 114.0 | -8.1  |
| 48485 | Wichita County, TX      | 100.4         | 98.6                 | 1.8   | 103.5 | -3.1  |
| 48491 | Williamson County, TX   | 105.2         | 97.1                 | 8.1   | 103.5 | 1.6   |

| 48493          | Wilson County, TX        | 79.6  | 73.3  | 6.3  | 82.2  | -2.6 |
|----------------|--------------------------|-------|-------|------|-------|------|
| 48495          | Wise County, TX          | 81.8  | 79.9  | 1.9  | 87.4  | -2.0 |
|                |                          | 91.5  | 86.5  | 5.0  |       |      |
| 49005          | Cache County, UT         |       |       |      | 93.1  | -1.6 |
| 49011<br>49023 | Davis County, UT         | 110.9 | 106.5 | 4.3  | 113.5 | -2.7 |
|                | Juab County, UT          | 72.2  | 67.4  | 4.8  | 81.7  | -9.4 |
| 49035          | Salt Lake County, UT     | 118.3 | 118.0 | 0.4  | 121.5 | -3.2 |
| 49043          | Summit County, UT        | 83.4  | 77.9  | 5.5  | 84.2  | -0.8 |
| 49045          | Tooele County, UT        | 86.9  | 82.4  | 4.5  | 93.1  | -6.2 |
| 49049          | Utah County, UT          | 114.4 | 107.3 | 7.1  | 116.5 | -2.1 |
| 49053          | Washington County, UT    | 94.3  | 88.9  | 5.4  | 95.5  | -1.1 |
| 49057          | Weber County, UT         | 109.7 | 107.1 | 2.6  | 111.7 | -2.0 |
| 50007          | Chittenden County, VT    | 103.4 | 96.8  | 6.6  | 103.1 | 0.3  |
| 50011          | Franklin County, VT      | 88.3  | 81.0  | 7.4  | 89.5  | -1.2 |
| 50013          | Grand Isle County, VT    | 91.4  | 72.4  | 19.1 | 79.5  | 12.0 |
| 51003          | Albemarle County, VA     | 90.0  | 75.2  | 14.8 | 82.0  | 8.0  |
| 51009          | Amherst County, VA       | 82.7  | 75.3  | 7.3  | 83.6  | -0.9 |
| 51011          | Appomattox County, VA    | 73.8  |       |      |       |      |
| 51013          | Arlington County, VA     | 176.8 |       |      |       |      |
| 51019          | Bedford County, VA       | 84.1  | 59.2  | 24.9 | 66.5  | 17.6 |
| 51023          | Botetourt County, VA     | 86.4  | 80.1  | 6.3  | 88.1  | -1.7 |
| 51031          | Campbell County, VA      | 101.9 | 73.0  | 28.9 | 79.3  | 22.6 |
| 51033          | Caroline County, VA      | 83.8  | 70.6  | 13.2 | 78.4  | 5.5  |
| 51041          | Chesterfield County, VA  | 105.0 | 94.3  | 10.8 | 98.2  | 6.8  |
| 51043          | Clarke County, VA        | 87.5  |       |      |       |      |
| 51053          | Dinwiddie County, VA     | 79.3  | 66.7  | 12.6 | 77.9  | 1.4  |
| 51059          | Fairfax County, VA       | 120.5 |       |      |       |      |
| 51061          | Fauquier County, VA      | 84.7  | 68.5  | 16.2 | 75.4  | 9.3  |
| 51065          | Fluvanna County, VA      | 81.0  | 71.8  | 9.3  | 77.6  | 3.4  |
| 51067          | Franklin County, VA      | 87.2  | 73.9  | 13.3 | 80.3  | 6.9  |
| 51069          | Frederick County, VA     | 92.7  | 69.5  | 23.2 | 75.6  | 17.1 |
| 51073          | Gloucester County, VA    | 97.2  | 82.6  | 14.6 | 86.8  | 10.4 |
| 51075          | Goochland County, VA     | 84.6  | 64.2  | 20.4 | 71.9  | 12.7 |
| 51079          | Greene County, VA        | 85.6  | 72.2  | 13.4 | 78.2  | 7.4  |
| 51085          | Hanover County, VA       | 91.3  | 73.8  | 17.5 | 79.0  | 12.3 |
| 51087          | Henrico County, VA       | 114.6 | 102.1 | 12.5 | 105.9 | 8.7  |
| 51093          | Isle of Wight County, VA | 82.2  | 70.4  | 11.8 | 79.7  | 2.5  |
| 51095          | James City County, VA    | 101.7 | 90.2  | 11.5 | 93.9  | 7.9  |
| 51101          | King William County, VA  | 88.9  | 81.1  | 7.8  | 87.4  | 1.5  |
| 51107          | Loudoun County, VA       | 112.8 | 93.4  | 19.4 | 99.6  | 13.2 |
| 51115          | Mathews County, VA       | 90.4  | 78.3  | 12.0 | 82.0  | 8.3  |
| 51121          | Montgomery County, VA    | 101.0 | 74.3  | 26.7 | 80.8  | 20.2 |
| 51127          | New Kent County, VA      | 82.8  | 73.6  | 9.2  | 80.3  | 2.5  |
| 51143          | Pittsylvania County, VA  | 79.5  | 66.1  | 13.4 | 73.1  | 6.4  |
| 51145          | Powhatan County, VA      | 82.4  | 72.8  | 9.6  | 76.3  | 6.1  |
| 51145          | FOWIIAIAII COUIILY, VA   | 82.4  | /2.8  | 9.6  | /0.3  | 0.1  |

|       | Prince George County,     |       |       |       |       |       |
|-------|---------------------------|-------|-------|-------|-------|-------|
| 51149 | VA                        | 84.4  | 105.5 | -21.1 | 108.6 | -24.2 |
|       | Prince William County,    |       |       |       |       |       |
| 51153 | VA                        | 116.4 | 101.8 | 14.6  |       |       |
| 51155 | Pulaski County, VA        | 98.9  | 89.1  | 9.8   | 94.5  | 4.4   |
| 51161 | Roanoke County, VA        | 101.0 | 76.8  | 24.2  | 82.0  | 19.0  |
| 51165 | Rockingham County, VA     | 89.5  | 71.3  | 18.1  | 78.4  | 11.0  |
| 51169 | Scott County, VA          | 88.9  | 86.6  | 2.3   | 93.5  | -4.6  |
| 51177 | Spotsylvania County, VA   | 99.2  | 72.2  | 27.0  | 78.0  | 21.2  |
| 51179 | Stafford County, VA       | 98.7  | 87.3  | 11.4  | 92.4  | 6.3   |
| 51183 | Sussex County, VA         | 87.2  |       |       |       |       |
| 51187 | Warren County, VA         | 96.5  | 90.1  | 6.5   | 96.1  | 0.4   |
| 51191 | Washington County, VA     | 92.0  | 92.7  | -0.7  | 97.7  | -5.7  |
| 51199 | York County, VA           | 105.1 | 111.0 | -5.8  | 112.2 | -7.1  |
| 51510 | Alexandria city, VA       | 181.3 |       |       |       |       |
| 51515 | Bedford city, VA          | 100.5 |       |       |       |       |
| 51520 | Bristol city, VA          | 120.4 |       |       |       |       |
| 51540 | Charlottesville city, VA  | 138.2 |       |       |       |       |
| 51550 | Chesapeake city, VA       | 108.6 | 104.7 | 3.9   | 108.0 | 0.6   |
| 51570 | Colonial Heights city, VA | 121.8 |       |       |       |       |
| 51590 | Danville city, VA         | 109.0 |       |       |       |       |
| 51600 | Fairfax city, VA          | 115.8 |       |       |       |       |
| 51610 | Falls Church city, VA     | 134.6 |       |       |       |       |
| 51630 | Fredericksburg city, VA   | 137.2 |       |       |       |       |
| 51650 | Hampton city, VA          | 127.5 |       |       |       |       |
| 51660 | Harrisonburg city, VA     | 132.6 |       |       |       |       |
| 51670 | Hopewell city, VA         | 135.0 |       |       |       |       |
| 51680 | Lynchburg city, VA        | 118.6 |       |       |       |       |
| 51683 | Manassas city, VA         | 125.9 |       |       |       |       |
| 51685 | Manassas Park city, VA    | 134.2 |       |       |       |       |
| 51700 | Newport News city, VA     | 125.3 |       |       |       |       |
| 51710 | Norfolk city, VA          | 148.1 | 138.4 | 9.7   | 141.6 | 6.5   |
| 51730 | Petersburg city, VA       | 118.0 |       |       |       |       |
| 51735 | Poquoson city, VA         | 106.4 |       |       |       |       |
| 51740 | Portsmouth city, VA       | 130.6 | 128.0 | 2.5   | 132.4 | -1.8  |
| 51750 | Radford city, VA          | 126.4 |       |       |       |       |
| 51760 | Richmond city, VA         | 135.9 | 132.1 | 3.8   | 135.8 | 0.1   |
| 51770 | Roanoke city, VA          | 127.7 |       |       |       |       |
| 51775 | Salem city, VA            | 121.8 |       |       |       |       |
| 51800 | Suffolk city, VA          | 97.2  | 87.0  | 10.2  | 93.8  | 3.4   |
| 51810 | Virginia Beach city, VA   | 124.5 | 117.4 | 7.1   | 120.6 | 3.9   |
| 51830 | Williamsburg city, VA     | 123.3 |       |       |       |       |
| 51840 | Winchester city, VA       | 128.4 |       |       |       |       |
| 53003 | Asotin County, WA         | 113.9 | 107.6 | 6.2   | 113.0 | 0.8   |

| 53005 | Benton County, WA      | 99.5  | 93.7  | 5.8  | 99.2  | 0.3  |
|-------|------------------------|-------|-------|------|-------|------|
| 53005 | Chelan County, WA      | 98.4  | 91.6  | 6.7  | 104.0 | -5.6 |
| 53011 | Clark County, WA       | 107.2 | 103.1 | 4.1  | 104.5 | -1.3 |
| 53015 | Cowlitz County, WA     | 96.6  | 88.3  | 8.2  | 96.9  | -0.3 |
| 53015 | Douglas County, WA     | 97.5  | 91.0  | 6.5  | 102.1 | -4.7 |
| 53021 | Franklin County, WA    | 103.2 | 94.5  | 8.6  | 102.1 | 1.1  |
| 53033 | King County, WA        | 103.2 | 120.5 | 6.6  | 126.0 | 1.0  |
| 53035 | Kitsap County, WA      | 100.9 | 96.7  | 4.2  | 102.3 | -1.4 |
| 53053 | Pierce County, WA      | 112.3 | 107.1 | 5.2  | 113.0 | -0.7 |
| 53055 | Skagit County, WA      | 98.1  | 91.9  | 6.1  | 98.3  | -0.3 |
| 53061 | Snohomish County, WA   | 107.2 | 99.9  | 7.3  | 106.3 | 0.9  |
| 53063 | Spokane County, WA     | 111.9 | 109.9 | 2.0  | 113.8 | -1.9 |
| 53067 | Thurston County, WA    | 100.6 | 93.6  | 7.0  | 99.3  | 1.3  |
| 53073 | Whatcom County, WA     | 98.6  | 91.3  | 7.3  | 97.9  | 0.8  |
| 53077 | Yakima County, WA      | 94.2  | 90.4  | 3.9  | 100.4 | -6.2 |
| 54003 | Berkeley County, WV    | 97.1  | 89.2  | 7.9  | 92.4  | 4.7  |
| 54005 | Boone County, WV       | 102.4 | 99.5  | 2.9  | 105.1 | -2.7 |
| 54009 | Brooke County, WV      | 104.2 | 99.1  | 5.1  | 104.0 | 0.2  |
| 54011 | Cabell County, WV      | 113.0 | 110.2 | 2.8  | 115.5 | -2.5 |
| 54029 | Hancock County, WV     | 107.3 | 108.2 | -0.9 | 112.2 | -4.9 |
| 54037 | Jefferson County, WV   | 95.5  | 89.8  | 5.6  | 94.4  | 1.1  |
| 54039 | Kanawha County, WV     | 113.5 | 108.6 | 4.8  | 113.7 | -0.2 |
| 54051 | Marshall County, WV    | 105.9 | 98.1  | 7.9  | 104.1 | 1.8  |
| 54057 | Mineral County, WV     | 96.6  | 90.3  | 6.3  | 96.9  | -0.3 |
| 54061 | Monongalia County, WV  | 110.8 | 105.6 | 5.2  | 110.6 | 0.2  |
| 54065 | Morgan County, WV      | 83.3  | 77.4  | 6.0  | 83.2  | 0.1  |
| 54069 | Ohio County, WV        | 114.8 | 111.3 | 3.6  | 116.2 | -1.4 |
| 54077 | Preston County, WV     | 84.7  | 75.3  | 9.4  | 82.5  | 2.2  |
| 54079 | Putnam County, WV      | 100.7 | 95.8  | 5.0  | 100.7 | 0.1  |
| 54099 | Wayne County, WV       | 102.2 | 98.4  | 3.8  | 108.4 | -6.2 |
| 54107 | Wood County, WV        | 111.9 | 102.7 | 9.2  | 108.8 | 3.1  |
| 55009 | Brown County, WI       | 95.2  | 94.2  | 1.0  | 99.8  | -4.7 |
| 55015 | Calumet County, WI     | 87.6  | 74.5  | 13.2 | 83.1  | 4.5  |
| 55017 | Chippewa County, WI    | 84.6  | 79.1  | 5.5  | 86.5  | -1.9 |
| 55021 | Columbia County, WI    | 85.7  | 74.2  | 11.5 | 82.7  | 3.0  |
| 55025 | Dane County, WI        | 109.9 | 102.4 | 7.5  | 109.7 | 0.2  |
| 55031 | Douglas County, WI     | 90.2  | 87.2  | 2.9  | 95.1  | -4.9 |
| 55035 | Eau Claire County, WI  | 97.1  | 99.7  | -2.6 | 106.8 | -9.7 |
| 55039 | Fond du Lac County, WI | 94.3  | 85.6  | 8.6  | 92.6  | 1.6  |
| 55049 | lowa County, WI        | 74.8  | 73.7  | 1.1  | 82.6  | -7.8 |
| 55059 | Kenosha County, WI     | 110.2 | 106.5 | 3.7  | 111.2 | -1.0 |
| 55061 | Kewaunee County, WI    | 67.8  | 65.3  | 2.5  | 76.4  | -8.6 |
| 55063 | La Crosse County, WI   | 108.2 | 105.2 | 3.0  | 110.5 | -2.3 |
| 55073 | Marathon County, WI    | 85.3  | 81.9  | 3.3  | 90.7  | -5.4 |

| 55079 | Milwaukee County, WI  | 139.8 | 141.2 | -1.4 | 145.3 | -5.5 |
|-------|-----------------------|-------|-------|------|-------|------|
| 55083 | Oconto County, WI     | 72.1  | 68.6  | 3.5  | 77.1  | -4.9 |
| 55087 | Outagamie County, WI  | 99.5  | 96.7  | 2.8  | 102.9 | -3.4 |
| 55089 | Ozaukee County, WI    | 92.1  | 86.7  | 5.4  | 93.0  | -0.9 |
| 55093 | Pierce County, WI     | 87.5  | 80.5  | 7.1  | 90.5  | -3.0 |
| 55101 | Racine County, WI     | 105.5 | 103.7 | 1.8  | 108.1 | -2.6 |
| 55105 | Rock County, WI       | 97.7  | 95.2  | 2.5  | 100.5 | -2.9 |
| 55109 | St. Croix County, WI  | 77.5  | 72.1  | 5.4  | 81.4  | -3.9 |
| 55117 | Sheboygan County, WI  | 97.5  | 92.1  | 5.4  | 98.2  | -0.7 |
| 55131 | Washington County, WI | 86.2  | 79.0  | 7.1  | 85.3  | 0.8  |
| 55133 | Waukesha County, WI   | 99.5  | 90.3  | 9.2  | 94.5  | 5.0  |
| 55139 | Winnebago County, WI  | 107.0 | 104.6 | 2.4  | 109.7 | -2.8 |
| 56021 | Laramie County, WY    | 99.4  | 95.7  | 3.7  | 102.0 | -2.7 |
| 56025 | Natrona County, WY    | 105.3 | 94.6  | 10.7 | 102.4 | 2.8  |

# Appendix B. County Compactness Factors and Composite Indices for 2010

| fips | county                | density | mix    | centering | street | composite |
|------|-----------------------|---------|--------|-----------|--------|-----------|
|      |                       | factor  | factor | factor    | factor | index     |
| 1009 | Blount County         | 90.36   | 37.85  | 74.28     | 60.14  | 56.6      |
| 1015 | Calhoun County        | 91.58   | 86.7   | 117.7     | 104.38 | 100.11    |
| 1021 | Chilton County        | 89.98   | 52.55  | 81.61     | 62.37  | 64.14     |
| 1033 | Colbert County        | 95.11   | 104.27 | 76.99     | 124.68 | 100.33    |
| 1051 | Elmore County         | 91.59   | 60.63  | 86.59     | 85.71  | 76.15     |
| 1055 | Etowah County         | 93.78   | 91.28  | 116.86    | 93.1   | 98.43     |
| 1069 | Houston County        | 94.83   | 102.37 | 98.64     | 88.97  | 95.2      |
| 1073 | Jefferson County      | 99.01   | 110.72 | 122.44    | 126.81 | 118.64    |
| 1077 | Lauderdale County     | 94.46   | 84.43  | 105.63    | 88.5   | 91.48     |
| 1079 | Lawrence County       | 89.38   | 51.74  | 86.98     | 66.67  | 66.75     |
| 1081 | Lee County            | 96.48   | 87.9   | 104.17    | 84.55  | 91.5      |
| 1083 | Limestone County      | 91.62   | 58.45  | 89.78     | 82.64  | 75.51     |
| 1089 | Madison County        | 97.61   | 98.59  | 103.31    | 114.82 | 104.53    |
| 1097 | Mobile County         | 99.06   | 108.17 | 93.94     | 113.78 | 104.72    |
| 1101 | Montgomery County     | 102.14  | 120.67 | 118.34    | 105.98 | 114.89    |
| 1103 | Morgan County         | 96.47   | 95.35  | 116.51    | 101.04 | 102.96    |
| 1113 | Russell County        | 94.83   | 90.91  | 78.65     | 93.54  | 86.71     |
| 1115 | St. Clair County      | 91.04   | 55.96  | 81.95     | 84.47  | 72.65     |
| 1117 | Shelby County, AL     | 94.43   | 91.33  | 88.2      | 92.91  | 89.53     |
| 1125 | Tuscaloosa County, AL | 96.71   | 101.44 | 136.82    | 110.56 | 114.39    |
| 1127 | Walker County, AL     | 90.6    | 65.74  | 86.66     | 92.5   | 79.62     |
| 4005 | Coconino County, AZ   | 95.58   | 105.89 | 159.7     | 80.11  | 113.04    |
| 4013 | Maricopa County, AZ   | 110.5   | 118.07 | 118.48    | 118.04 | 120.56    |
| 4015 | Mohave County, AZ     | 96.2    | 90.76  | 97.35     | 95.37  | 93.58     |
| 4019 | Pima County, AZ       | 102.91  | 109.55 | 129.25    | 101.54 | 113.66    |
| 4021 | Pinal County, AZ      | 96.42   | 74.63  | 93.08     | 100.74 | 88.9      |
| 4025 | Yavapai County, AZ    | 96      | 89.71  | 88.28     | 86.4   | 87.49     |
| 4027 | Yuma County, AZ       | 99.68   | 105.56 | 142.91    | 107.38 | 117.54    |
| 5007 | Benton County, AR     | 95.22   | 95.05  | 104.81    | 89.33  | 95.07     |
| 5031 | Craighead County, AR  | 95.83   | 97.46  | 113.68    | 76.68  | 94.83     |
| 5033 | Crawford County, AR   | 92.25   | 90.19  | 82.88     | 80.03  | 82.74     |
| 5035 | Crittenden County, AR | 96.93   | 115.43 | 79.24     | 89.18  | 93.93     |
| 5045 | Faulkner County, AR   | 95.11   | 92.1   | 83.67     | 74.78  | 82.83     |
| 5051 | Garland County, AR    | 92.69   | 89.51  | 116.53    | 103.18 | 100.6     |

| 5053 | Grant County, AR           | 89.11  | 79.34  | 77.98  | 60.72  | 70.67  |
|------|----------------------------|--------|--------|--------|--------|--------|
| 5069 | Jefferson County, AR       | 94.66  | 97.82  | 96.55  | 113.66 | 100.85 |
| 5079 | Lincoln County, AR         | 88.97  | 51.59  | 72.47  | 62.71  | 60.74  |
| 5085 | Lonoke County, AR          | 91.76  | 79.64  | 91.84  | 75.65  | 80.69  |
| 5087 | Madison County, AR         | 88.44  | 61.16  | 73.67  | 72.44  | 67.05  |
| 5091 | Miller County, AR          | 97.29  | 106.83 | 82.03  | 115.58 | 100.54 |
| 5111 | Poinsett County, AR        | 89.31  | 105.78 | 77.99  | 71.03  | 82.34  |
| 5119 | Pulaski County, AR         | 100.95 | 111.48 | 116.72 | 127.01 | 117.74 |
| 5125 | Saline County, AR          | 92.78  | 80.99  | 106.43 | 75.8   | 86.1   |
| 5131 | Sebastian County, AR       | 97.44  | 103.71 | 93.42  | 108.24 | 100.89 |
| 5143 | Washington County, AR      | 98.58  | 104.46 | 109.89 | 91.83  | 101.5  |
| 6001 | Alameda County, CA         | 137.65 | 143.4  | 115.28 | 151.09 | 146.57 |
| 6007 | Butte County, CA           | 99.2   | 121.87 | 106.28 | 91.9   | 106.08 |
| 6013 | Contra Costa County, CA    | 112.02 | 128.7  | 100.81 | 121.28 | 119.84 |
| 6017 | El Dorado County, CA       | 96.18  | 88.17  | 84.58  | 77.8   | 83.17  |
| 6019 | Fresno County, CA          | 103.35 | 127.85 | 104.03 | 94.25  | 109.31 |
| 6025 | Imperial County, CA        | 99.38  | 132.78 | 99.61  | 82.71  | 104.58 |
| 6029 | Kern County, CA            | 102.91 | 121.33 | 99.62  | 92.21  | 105.08 |
| 6031 | Kings County, CA           | 100.77 | 115.21 | 108.98 | 90.98  | 105.04 |
| 6037 | Los Angeles County, CA     | 152.55 | 145.2  | 121.62 | 141.02 | 150.67 |
| 6039 | Madera County, CA          | 96.68  | 110.34 | 104.67 | 69.69  | 94.12  |
| 6041 | Marin County, CA           | 109.25 | 141.52 | 96.85  | 111.15 | 118.57 |
| 6047 | Merced County, CA          | 100.54 | 122.04 | 112.8  | 85.94  | 106.74 |
| 6053 | Monterey County, CA        | 109.05 | 122.36 | 110.26 | 101.72 | 113.71 |
| 6055 | Napa County, CA            | 102.69 | 135.45 | 131.01 | 110.28 | 125.09 |
| 6059 | Orange County, CA          | 134.15 | 142.55 | 95.13  | 144.21 | 136.66 |
| 6061 | Placer County, CA          | 101.97 | 116.93 | 90.93  | 98.05  | 102.49 |
| 6065 | Riverside County, CA       | 105.36 | 117.55 | 108.49 | 98.38  | 109.41 |
| 6067 | Sacramento County, CA      | 115.28 | 128.54 | 135.7  | 129.68 | 134.5  |
| 6069 | San Benito County, CA      | 103.1  | 115.79 | 78.56  | 105.1  | 100.81 |
| 6071 | San Bernardino County, CA  | 106.82 | 122.13 | 95.87  | 92.42  | 105.45 |
| 6073 | San Diego County, CA       | 118.35 | 129.64 | 121.82 | 116.14 | 127.15 |
| 6075 | San Francisco County, CA   | 250.84 | 153.79 | 258.47 | 215.72 | 251.27 |
| 6077 | San Joaquin County, CA     | 106.5  | 132.92 | 104.79 | 118.62 | 119.85 |
| 6079 | San Luis Obispo County, CA | 97.52  | 124.79 | 111.43 | 102.74 | 111.53 |
| 6081 | San Mateo County, CA       | 130.72 | 144.53 | 93.82  | 131.35 | 131.72 |
| 6083 | Santa Barbara County, CA   | 116.62 | 139.7  | 112.02 | 116.13 | 126.69 |
| 6085 | Santa Clara County, CA     | 131.02 | 139.68 | 107.58 | 132.85 | 135.11 |
| 6087 | Santa Cruz County, CA      | 104.2  | 138.71 | 114.16 | 107.34 | 120.35 |

| 6089  | Shasta County, CA        | 96     | 110.79 | 114.25 | 88.66  | 103.07 |
|-------|--------------------------|--------|--------|--------|--------|--------|
| 6095  | Solano County, CA        | 106.86 | 130.6  | 103.94 | 114.95 | 117.8  |
| 6097  | Sonoma County, CA        | 100.37 | 131.12 | 101.87 | 97.67  | 109.81 |
| 6099  | Stanislaus County, CA    | 107.86 | 135.71 | 94.54  | 107.84 | 114.52 |
| 6101  | Sutter County, CA        | 98.92  | 119.22 | 126.45 | 82.89  | 108.68 |
| 6107  | Tulare County, CA        | 100.44 | 117.82 | 102.53 | 93.41  | 104.49 |
| 6111  | Ventura County, CA       | 110.13 | 131.48 | 99.8   | 114.98 | 117.82 |
| 6113  | Yolo County, CA          | 107.3  | 126.92 | 98.5   | 110.1  | 113.53 |
| 6115  | Yuba County, CA          | 97.57  | 95.43  | 82.17  | 89.37  | 88.8   |
| 8001  | Adams County, CO         | 106.63 | 122.25 | 82.26  | 122.37 | 110.59 |
| 8005  | Arapahoe County, CO      | 114.44 | 124.3  | 102.43 | 134.2  | 123.81 |
| 8013  | Boulder County, CO       | 107.71 | 122    | 111.33 | 115.52 | 117.87 |
| 8014  | Broomfield County, CO    | 105.87 | 113.8  | 83.11  | 129.14 | 110.09 |
| 8019  | Clear Creek County, CO   | 90.58  | 67.38  |        | 117.81 |        |
| 8031  | Denver County, CO        | 129.34 | 137.67 | 174.54 | 181.54 | 170.48 |
| 8035  | Douglas County, CO       | 102.77 | 97.61  | 92.17  | 97.77  | 96.94  |
| 8039  | Elbert County, CO        | 88.27  | 44.14  | 72.69  | 50.26  | 54.3   |
| 8041  | El Paso County, CO       | 104.62 | 119.18 | 95.89  | 123.96 | 113.79 |
| 8059  | Jefferson County, CO     | 106.94 | 125.25 | 90.89  | 112.99 | 111.4  |
| 8069  | Larimer County, CO       | 100.68 | 117.76 | 111.95 | 103.05 | 110.57 |
| 8077  | Mesa County, CO          | 101.69 | 113.73 | 124.35 | 107.33 | 114.88 |
| 8101  | Pueblo County, CO        | 100.43 | 112.15 | 112.96 | 121.67 | 114.91 |
| 8119  | Teller County, CO        | 94.68  | 82.25  | 81.88  | 108.04 | 89.53  |
| 8123  | Weld County, CO          | 97.29  | 114.35 | 111.18 | 95.06  | 105.65 |
| 9001  | Fairfield County, CT     | 110.88 | 131.47 | 125.41 | 101.99 | 122.04 |
| 9003  | Hartford County, CT      | 107.85 | 126.56 | 138.02 | 92.46  | 120.5  |
| 9007  | Middlesex County, CT     | 95.74  | 116.02 | 98.9   | 81.98  | 97.68  |
| 9009  | New Haven County, CT     | 107.16 | 128.91 | 137.15 | 102.88 | 124.04 |
| 9011  | New London County, CT    | 96.76  | 106.51 | 131.52 | 85.24  | 106.33 |
| 9013  | Tolland County, CT       | 96.05  | 89.61  | 97.77  | 63.29  | 83.17  |
| 10001 | Kent County, DE          | 94.72  | 97.37  | 102.26 | 89.82  | 95     |
| 10003 | New Castle County, DE    | 108.44 | 126.15 | 111.75 | 121.39 | 121.4  |
| 11001 | District of Columbia, DC | 193.52 | 138.05 | 219.97 | 185.15 | 206.37 |
| 12001 | Alachua County, FL       | 100.66 | 110.17 | 115.43 | 107.74 | 110.74 |
| 12003 | Baker County, FL         | 89.21  | 63.21  | 89.68  | 61.02  | 69.39  |
| 12005 | Bay County, FL           | 99.21  | 105.55 | 93.7   | 115.16 | 104.31 |
| 12009 | Brevard County, FL       | 102.39 | 103.2  | 86.39  | 110.4  | 100.75 |
| 12011 | Broward County, FL       | 120.61 | 133.24 | 95.43  | 148.86 | 131.01 |
| 12015 | Charlotte County, FL     | 94.98  | 97.96  | 103.74 | 114.83 | 103.64 |

| 12019 | Clay County, FL         | 97.16  | 92.55  | 98.14  | 95.4   | 94.71  |
|-------|-------------------------|--------|--------|--------|--------|--------|
| 12021 | Collier County, FL      | 99.42  | 104.7  | 83.67  | 105.06 | 97.74  |
| 12031 | Duval County, FL        | 106.31 | 113.1  | 118.71 | 125.06 | 119.96 |
| 12033 | Escambia County, FL     | 99.94  | 109.08 | 100.14 | 116.67 | 108.16 |
| 12035 | Flagler County, FL      | 96.82  | 82.32  | 79.96  | 99.05  | 86.78  |
| 12039 | Gadsden County, FL      | 90.27  | 57.12  | 83.72  | 95.13  | 76.69  |
| 12053 | Hernando County, FL     | 96.2   | 80.29  | 108.25 | 102.08 | 95.84  |
| 12057 | Hillsborough County, FL | 106.16 | 115.63 | 127.6  | 128.18 | 124.51 |
| 12061 | Indian River County, FL | 97.1   | 101.81 | 112.72 | 132.01 | 113.79 |
| 12069 | Lake County, FL         | 95.53  | 87.32  | 121.33 | 116.84 | 106.64 |
| 12071 | Lee County, FL          | 98.87  | 104.6  | 119.36 | 121.83 | 114.11 |
| 12073 | Leon County, FL         | 102.05 | 106.83 | 149.96 | 99.11  | 118.31 |
| 12081 | Manatee County, FL      | 102.17 | 114.33 | 112.33 | 129.01 | 118.27 |
| 12083 | Marion County, FL       | 93.51  | 83.3   | 140.38 | 98.85  | 105.07 |
| 12085 | Martin County, FL       | 98.62  | 110.16 | 106.69 | 113.84 | 109.26 |
| 12086 | Miami-Dade County, FL   | 137.38 | 132.85 | 131.33 | 156.48 | 149.93 |
| 12089 | Nassau County, FL       | 93.25  | 78.04  | 98.01  | 97.21  | 89.42  |
| 12091 | Okaloosa County, FL     | 100.2  | 113.18 | 109.67 | 105.87 | 109.14 |
| 12095 | Orange County, FL       | 108.01 | 110.76 | 118.48 | 124.47 | 119.5  |
| 12097 | Osceola County, FL      | 98.45  | 86.64  | 87.23  | 114.77 | 95.92  |
| 12099 | Palm Beach County, FL   | 107.77 | 125.08 | 107.06 | 118.32 | 118.4  |
| 12101 | Pasco County, FL        | 99.18  | 100.48 | 84.02  | 117.84 | 100.48 |
| 12103 | Pinellas County, FL     | 114.66 | 132.11 | 93.74  | 163.76 | 132.94 |
| 12105 | Polk County, FL         | 96.76  | 90.29  | 115.86 | 120.94 | 107.53 |
| 12109 | St. Johns County, FL    | 97.43  | 86.85  | 85.06  | 106.86 | 92.48  |
| 12111 | St. Lucie County, FL    | 100.74 | 97.46  | 102.45 | 120.07 | 106.54 |
| 12113 | Santa Rosa County, FL   | 92.28  | 93.99  | 81.78  | 80.59  | 83.78  |
| 12115 | Sarasota County, FL     | 101.61 | 116.04 | 113.62 | 124.42 | 117.59 |
| 12117 | Seminole County, FL     | 105.12 | 116.39 | 81.81  | 121.13 | 107.72 |
| 12127 | Volusia County, FL      | 99.33  | 107.91 | 100.7  | 115.72 | 107.47 |
| 12129 | Wakulla County, FL      | 89.66  | 45.54  | 78.68  | 79.41  | 66.29  |
| 13013 | Barrow County, GA       | 92.36  | 70.78  | 85.3   | 72.18  | 74.92  |
| 13015 | Bartow County, GA       | 90.76  | 77.69  | 86.6   | 80.47  | 79.63  |
| 13021 | Bibb County, GA         | 98.07  | 113.15 | 103.59 | 112.7  | 108.69 |
| 13029 | Bryan County, GA        | 89.84  | 61.04  | 81.95  | 71.54  | 69.79  |
| 13035 | Butts County, GA        | 91.1   | 82.26  | 87.09  | 67.51  | 77.24  |
| 13045 | Carroll County, GA      | 92.24  | 80.47  | 108.64 | 59.41  | 81.28  |
| 13047 | Catoosa County, GA      | 93.34  | 79.45  | 88.25  | 78.55  | 80.91  |
| 13051 | Chatham County, GA      | 99.64  | 117.03 | 126.17 | 126.88 | 122.03 |

| 13053 | Chattahoochee County, GA | 97.14  | 100.48 | 70.87  | 98.62  | 89.61  |
|-------|--------------------------|--------|--------|--------|--------|--------|
| 13057 | Cherokee County, GA      | 97.06  | 94.58  | 80.91  | 83.44  | 86.1   |
| 13059 | Clarke County, GA        | 100.91 | 115.76 | 98.31  | 92.89  | 102.49 |
| 13063 | Clayton County, GA       | 106.35 | 106.15 | 84.62  | 98.1   | 98.49  |
| 13067 | Cobb County, GA          | 106.99 | 116.91 | 91.39  | 107.76 | 107.28 |
| 13073 | Columbia County, GA      | 96.83  | 95.43  | 80.24  | 72.04  | 82.48  |
| 13077 | Coweta County, GA        | 92.69  | 85.33  | 81.74  | 72.61  | 78.64  |
| 13083 | Dade County, GA          | 89.57  | 56.36  | 80.64  | 69.91  | 67.3   |
| 13085 | Dawson County, GA        | 89.94  | 63.53  | 86.08  | 69.43  | 71.24  |
| 13089 | DeKalb County, GA        | 111.99 | 120.73 | 96.18  | 100.65 | 109.34 |
| 13095 | Dougherty County, GA     | 97.65  | 109.27 | 95.6   | 107.9  | 103.3  |
| 13097 | Douglas County, GA       | 95.83  | 89.53  | 103.33 | 70.96  | 87.25  |
| 13103 | Effingham County, GA     | 91.03  | 60.74  | 84.13  | 75.9   | 72.13  |
| 13113 | Fayette County, GA       | 93.23  | 94.36  | 100.88 | 78.34  | 89.51  |
| 13115 | Floyd County, GA         | 92.92  | 90.67  | 103.37 | 89.35  | 92.52  |
| 13117 | Forsyth County, GA       | 96.31  | 91.93  | 97.11  | 68.48  | 85.41  |
| 13121 | Fulton County, GA        | 107.63 | 122.6  | 146.48 | 108.57 | 126.94 |
| 13127 | Glynn County, GA         | 92.87  | 102    | 95.73  | 111.38 | 100.62 |
| 13135 | Gwinnett County, GA      | 106.36 | 111.94 | 88.7   | 89.68  | 98.95  |
| 13139 | Hall County, GA          | 94.45  | 89.1   | 139.3  | 87.59  | 103.3  |
| 13143 | Haralson County, GA      | 90.08  | 73.41  | 78.3   | 82.15  | 75.97  |
| 13145 | Harris County, GA        | 89.51  | 34.28  | 71.89  | 62.25  | 55.12  |
| 13151 | Henry County, GA         | 95.26  | 81.75  | 86.07  | 74.28  | 80.21  |
| 13153 | Houston County, GA       | 99.67  | 97.7   | 89.66  | 91.56  | 93.23  |
| 13169 | Jones County, GA         | 90.26  | 80.32  | 81.59  | 59.82  | 72.19  |
| 13171 | Lamar County, GA         | 90.01  | 68.75  | 79.24  | 69.42  | 70.75  |
| 13177 | Lee County, GA           | 90.74  | 63.81  | 80.13  | 67.38  | 69.06  |
| 13179 | Liberty County, GA       | 96.95  | 85.66  | 100.72 | 88.85  | 91.21  |
| 13185 | Lowndes County, GA       | 95.78  | 102.08 | 106.87 | 91.72  | 98.88  |
| 13189 | McDuffie County, GA      | 89.94  | 68.85  | 78.49  | 72.18  | 71.4   |
| 13195 | Madison County, GA       | 89.81  | 53.09  | 73.41  | 61.79  | 61.49  |
| 13199 | Meriwether County, GA    | 89.17  | 52.92  | 79.4   | 65.55  | 64.31  |
| 13207 | Monroe County, GA        | 89.72  | 49.47  | 77.43  | 66.44  | 63.06  |
| 13213 | Murray County, GA        | 90.63  | 57.18  | 84.75  | 68.86  | 68.85  |
| 13215 | Muscogee County, GA      | 103.92 | 119.01 | 133.98 | 108.41 | 120.64 |
| 13217 | Newton County, GA        | 94.48  | 61.24  | 123.65 | 77.77  | 86.46  |
| 13219 | Oconee County, GA        | 90.84  | 85.05  | 74.86  | 69.72  | 74.87  |
| 13221 | Oglethorpe County, GA    | 88.61  | 22.76  | 70.81  | 45.28  | 45.49  |
| 13223 | Paulding County, GA      | 93.49  | 68.19  | 83.49  | 74.96  | 74.76  |

| 13227 | Pickens County, GA    | 90.19  | 68.61  | 81.67  | 61.08  | 68.89  |
|-------|-----------------------|--------|--------|--------|--------|--------|
| 13231 |                       |        |        |        |        |        |
| 13245 | Richmond County, GA   | 99.09  | 111.4  | 124.13 | 104.91 | 112.49 |
| 13247 | Rockdale County, GA   | 95.92  | 93.91  | 82.64  | 86.78  | 87.13  |
| 13255 | Spalding County, GA   | 93.04  | 83.74  | 102.12 | 85.73  | 88.83  |
| 13273 | Terrell County, GA    | 88.84  | 78.95  | 78.22  | 74.53  | 74.9   |
| 13295 | Walker County, GA     | 91.84  | 77.95  | 88.88  | 75.62  | 79.24  |
| 13297 | Walton County, GA     | 91.96  | 71.8   | 87.33  | 54.96  | 70.32  |
| 13313 | Whitfield County, GA  | 94.64  | 87.29  | 115.72 | 88.51  | 95.63  |
| 13321 | Worth County, GA      | 88.76  | 52.25  | 84.69  | 68.22  | 66.48  |
| 16001 | Ada County, ID        | 103.58 | 124.6  | 102.02 | 108.68 | 112.28 |
| 16005 | Bannock County, ID    | 101.28 | 123.06 | 128.18 | 124.04 | 124.18 |
| 16019 | Bonneville County, ID | 98.84  | 118.52 | 99.62  | 109.57 | 108.39 |
| 16027 | Canyon County, ID     | 98.64  | 112.28 | 90.6   | 106.1  | 102.41 |
| 16045 | Gem County, ID        | 92.23  | 83.41  | 76.44  | 113.29 | 89.06  |
| 16051 | Jefferson County, ID  | 89.1   | 69.82  | 83.29  | 88.98  | 78.26  |
| 16055 | Kootenai County, ID   | 97.55  | 113.96 | 122.32 | 101.44 | 111.14 |
| 16069 | Nez Perce County, ID  | 99.34  | 116.89 | 92.82  | 113.12 | 107    |
| 17003 | Alexander County, IL  | 89.05  |        | 70.12  | 121.33 |        |
| 17005 | Bond County, IL       | 91.76  | 87.79  | 129.58 | 109.49 | 105.89 |
| 17007 | Boone County, IL      | 96.36  | 95.37  | 81.63  | 85.74  | 87.08  |
| 17019 | Champaign County, IL  | 109.28 | 127.58 | 141.54 | 107.66 | 127.19 |
| 17027 | Clinton County, IL    | 89.17  | 87.01  | 82.04  | 94.5   | 85.06  |
| 17031 | Cook County, IL       | 151.4  | 141.34 | 155.66 | 170.12 | 169.04 |
| 17037 | DeKalb County, IL     | 99.94  | 111.36 | 84.27  | 93.39  | 96.51  |
| 17043 | DuPage County, IL     | 111.41 | 135.96 | 88.41  | 126.48 | 119.67 |
| 17053 | Ford County, IL       | 90     | 136.48 | 78.31  | 83.16  | 96.19  |
| 17063 | Grundy County, IL     | 92.99  | 101.16 | 86.63  | 110.27 | 97.17  |
| 17073 | Henry County, IL      | 90.62  | 116.08 | 84.59  | 81.22  | 91.31  |
| 17083 | Jersey County, IL     | 89.46  | 78.12  | 85.72  | 85.66  | 80.72  |
| 17089 | Kane County, IL       | 108.34 | 120.57 | 90.86  | 109.06 | 109.11 |
| 17091 | Kankakee County, IL   | 95.65  | 119.77 | 105.98 | 97.47  | 105.96 |
| 17093 | Kendall County, IL    | 94.3   | 90.54  | 82.01  | 95.42  | 88.08  |
| 17097 | Lake County, IL       | 103.98 | 121.02 | 97.08  | 118.15 | 112.71 |
| 17111 | McHenry County, IL    | 98.53  | 105.24 | 83.23  | 95.57  | 94.49  |
| 17113 | McLean County, IL     | 104.94 | 120.63 | 110.85 | 102.41 | 112.27 |
| 17115 | Macon County, IL      | 95.56  | 114.15 | 112.75 | 97.28  | 106.24 |
| 17117 | Macoupin County, IL   | 92.2   | 111.71 | 78.1   | 115.16 | 99.1   |
| 17119 | Madison County, IL    | 96.83  | 119.34 | 103.17 | 114.28 | 110.62 |

| 17123 | Marshall County, IL    | 89.56  | 95.57  | 68.03  | 113.51 | 89.47  |
|-------|------------------------|--------|--------|--------|--------|--------|
| 17129 | Menard County, IL      | 88.81  | 90.2   | 83.8   | 84.09  | 83.22  |
| 17131 | Mercer County, IL      | 88.81  | 97.3   | 71.15  | 95.19  | 84.98  |
| 17133 | Monroe County, IL      | 89.84  | 90.63  | 77.62  | 91.7   | 84.14  |
| 17143 | Peoria County, IL      | 100.95 | 120.84 | 143.87 | 112.87 | 124.81 |
| 17147 | Piatt County, IL       | 88.83  | 107.89 | 81.61  | 83.39  | 87.9   |
| 17161 | Rock Island County, IL | 101.09 | 128.28 | 104.97 | 116.1  | 115.93 |
| 17163 | St. Clair County, IL   | 96.6   | 114.62 | 90.19  | 113.08 | 104.58 |
| 17167 | Sangamon County, IL    | 97.54  | 115.25 | 157.52 | 108.44 | 124.88 |
| 17179 | Tazewell County, IL    | 96.01  | 107.55 | 85.37  | 110.59 | 99.85  |
| 17183 | Vermilion County, IL   | 91.84  | 99.84  | 112.75 | 117.88 | 107.05 |
| 17197 | Will County, IL        | 101.35 | 114.01 | 92.55  | 100.58 | 102.68 |
| 17201 | Winnebago County, IL   | 100.8  | 123.79 | 117.91 | 120.01 | 119.75 |
| 17203 | Woodford County, IL    | 89.23  | 111.21 | 85.84  | 94.01  | 93.77  |
| 18003 | Allen County, IN       | 100.69 | 113.3  | 110.06 | 100.51 | 107.76 |
| 18005 | Bartholomew County, IN | 96.38  | 101.42 | 108.25 | 114.65 | 106.54 |
| 18011 | Boone County, IN       | 94.39  | 103.9  | 79.83  | 90.61  | 90.12  |
| 18013 | Brown County, IN       | 92.73  | 36.11  | 76.3   | 63.42  | 58.47  |
| 18015 | Carroll County, IN     | 89.42  | 86.26  | 86.24  | 85.98  | 83.54  |
| 18019 | Clark County, IN       | 97.57  | 113.96 | 86.06  | 107.2  | 101.51 |
| 18021 | Clay County, IN        | 91.51  | 101.15 | 76.58  | 109.38 | 93.25  |
| 18029 | Dearborn County, IN    | 91.96  | 82.67  | 89.51  | 96.29  | 87.5   |
| 18035 | Delaware County, IN    | 103.15 | 118.8  | 91.63  | 109.13 | 107.18 |
| 18039 | Elkhart County, IN     | 94.95  | 104.81 | 89.66  | 114.82 | 101.34 |
| 18043 | Floyd County, IN       | 101.1  | 121.02 | 86.15  | 99.15  | 102.35 |
| 18047 | Franklin County, IN    | 90.85  | 54.82  | 78.33  | 95.48  | 74.56  |
| 18051 | Gibson County, IN      | 92.92  | 109.39 | 77.46  | 124.54 | 101.36 |
| 18055 | Greene County, IN      | 90.44  | 93.15  | 82.02  | 88.86  | 85.62  |
| 18057 | Hamilton County, IN    | 99.85  | 104.3  | 81.69  | 94.95  | 93.93  |
| 18059 | Hancock County, IN     | 93.31  | 95.1   | 82.93  | 84.8   | 86.14  |
| 18061 | Harrison County, IN    | 91.11  | 56.7   | 85.5   | 61.31  | 66.71  |
| 18063 | Hendricks County, IN   | 95.72  | 91.32  | 79.42  | 89.16  | 85.98  |
| 18067 | Howard County, IN      | 98.37  | 114.28 | 95.94  | 109.61 | 105.75 |
| 18073 | Jasper County, IN      | 89.52  | 90.18  | 73.22  | 51.82  | 69.9   |
| 18081 | Johnson County, IN     | 98.31  | 116.23 | 81.08  | 102.48 | 99.4   |
| 18089 | Lake County, IN        | 102.28 | 124.13 | 124.4  | 126.26 | 124.35 |
| 18091 | LaPorte County, IN     | 95.04  | 104.81 | 108.11 | 96.11  | 101.29 |
| 18095 | Madison County, IN     | 96.4   | 113.83 | 107.92 | 112.32 | 109.63 |
| 18097 | Marion County, IN      | 108.62 | 123.19 | 125.02 | 127.04 | 126.5  |

| 18105 | Monroe County, IN        | 104.36 | 112.59 | 163.85 | 98.52  | 125.06 |
|-------|--------------------------|--------|--------|--------|--------|--------|
| 18109 | Morgan County, IN        | 94.61  | 85.99  | 85.6   | 99.46  | 89.15  |
| 18115 | Ohio County, IN          | 91.06  | 97.13  | 78.9   | 99.39  | 89.41  |
| 18119 | Owen County, IN          | 91.06  | 35.65  | 78.62  | 99.32  | 69.87  |
| 18127 | Porter County, IN        | 96.95  | 108.4  | 88.88  | 87.95  | 94.37  |
| 18129 | Posey County, IN         | 92.19  | 75.2   | 81.37  | 81.92  | 78.1   |
| 18133 | Putnam County, IN        | 91.01  | 96.03  | 82.78  | 73.04  | 81.95  |
| 18141 | St. Joseph County, IN    | 100.67 | 117.65 | 124.8  | 131.2  | 123.48 |
| 18145 | Shelby County, IN        | 98.24  | 116    | 82.26  | 97.84  | 98.21  |
| 18153 | Sullivan County, IN      | 89.97  | 94.33  | 85.42  | 79.03  | 83.81  |
| 18157 | Tippecanoe County, IN    | 104.58 | 112.14 | 101.52 | 96     | 104.5  |
| 18159 | Tipton County, IN        | 89.55  | 85.73  | 80.1   | 62.84  | 74.17  |
| 18163 | Vanderburgh County, IN   | 101.79 | 119.7  | 120.43 | 116.35 | 118.41 |
| 18165 | Vermillion County, IN    | 103.23 | 90.48  | 79.32  | 155.06 | 108.87 |
| 18167 | Vigo County, IN          | 96.9   | 111.19 | 114.75 | 128.65 | 116.27 |
| 18173 | Warrick County, IN       | 99.66  | 102.11 | 81.65  | 82.32  | 89.18  |
| 18175 | Washington County, IN    | 94.15  | 67.81  | 80.3   | 87.16  | 77.7   |
| 18179 | Wells County, IN         | 89.98  | 90.1   | 83.04  | 70.18  | 78.93  |
| 18183 | Whitley County, IN       | 90.31  | 89.14  | 84.12  | 56.3   | 74.69  |
| 19011 | Benton County, IA        | 88.87  | 108.97 | 90.6   | 97.81  | 95.65  |
| 19013 | Black Hawk County, IA    | 99.1   | 129.91 | 94.2   | 118.5  | 113.18 |
| 19017 | Bremer County, IA        | 89     | 112.79 | 82.24  | 77.7   | 87.91  |
| 19049 | Dallas County, IA        | 95.45  | 106.94 | 79.89  | 91.67  | 91.77  |
| 19061 | Dubuque County, IA       | 100.57 | 130.56 | 115.08 | 106.99 | 116.81 |
| 19085 | Harrison County, IA      | 89.16  | 113.13 | 76.21  | 76.79  | 85.87  |
| 19103 | Johnson County, IA       | 103.02 | 124.12 | 157.95 | 85.78  | 122.39 |
| 19105 | Jones County, IA         | 89.77  | 115.53 | 71.55  | 95.83  | 91.37  |
| 19113 | Linn County, IA          | 100.19 | 118.29 | 121.29 | 103.21 | 113.58 |
| 19121 | Madison County, IA       | 90.62  | 124.56 | 70.25  | 103.16 | 96.4   |
| 19129 | Mills County, IA         | 89.93  | 84.78  | 77.08  | 92.04  | 82.25  |
| 19153 | Polk County, IA          | 102.96 | 129.31 | 116.94 | 112.82 | 119.6  |
| 19155 | Pottawattamie County, IA | 97.53  | 120.78 | 95.92  | 99.22  | 104.25 |
| 19163 | Scott County, IA         | 100.21 | 128.03 | 85.19  | 130.22 | 113.79 |
| 19169 | Story County, IA         | 96.6   | 115.01 | 125.73 | 97.63  | 111.05 |
| 19181 | Warren County, IA        | 93.98  | 105.61 | 82.31  | 83.56  | 89.09  |
| 19183 | Washington County, IA    | 90     | 104.89 | 78.56  | 86.53  | 87.36  |
| 19193 | Woodbury County, IA      | 97.33  | 125.17 | 117.13 | 122.41 | 119.6  |
| 20015 | Butler County, KS        | 95.93  | 116.69 | 81.59  | 76.86  | 90.86  |
| 20045 | Douglas County, KS       | 100.21 | 127.37 | 99.68  | 98.22  | 108.05 |

| 20059 | Franklin County, KS     | 89.92  | 101.1  | 85.19  | 101.84 | 93.07  |
|-------|-------------------------|--------|--------|--------|--------|--------|
| 20061 | Geary County, KS        | 96.96  |        | 84.76  | 128.69 |        |
| 20079 | Harvey County, KS       | 90.56  | 115.17 | 75.64  | 73.36  | 85.7   |
| 20085 | Jackson County, KS      | 88.64  | 77.77  | 79.63  | 44.65  | 65.47  |
| 20091 | Johnson County, KS      | 104.45 | 125.43 | 86.47  | 101.88 | 105.76 |
| 20103 | Leavenworth County, KS  | 95.13  | 99.39  | 87.24  | 93.72  | 92.25  |
| 20121 | Miami County, KS        | 89.17  | 87.98  | 79.03  | 102.93 | 87.08  |
| 20139 | Osage County, KS        | 89.37  | 97.03  | 68.66  | 75.02  | 77.91  |
| 20149 | Pottawatomie County, KS | 89     |        | 81.55  | 95.3   |        |
| 20161 | Riley County, KS        | 98.61  |        | 93.38  | 105.56 |        |
| 20173 | Sedgwick County, KS     | 102.93 | 118.91 | 117.57 | 112.3  | 116.34 |
| 20177 | Shawnee County, KS      | 98.59  | 111.59 | 125.79 | 108.8  | 114.14 |
| 20191 | Sumner County, KS       | 88.32  | 98.41  | 84.72  | 92.96  | 88.76  |
| 20209 | Wyandotte County, KS    | 101.91 | 113.88 | 103.1  | 127.92 | 114.79 |
| 21015 | Boone County, KY        | 99.7   | 101.93 | 95.37  | 84.83  | 94.26  |
| 21017 | Bourbon County, KY      | 97.22  | 93.99  | 80.83  | 92.96  | 88.94  |
| 21019 | Boyd County, KY         | 94.45  | 98.55  | 126.68 | 104.55 | 107.65 |
| 21029 | Bullitt County, KY      | 95.94  | 83.26  | 81.17  | 86.62  | 83.25  |
| 21037 | Campbell County, KY     | 102.73 | 124.27 | 85.29  | 109.72 | 106.95 |
| 21047 | Christian County, KY    | 97.34  | 94.37  | 87.11  | 104.06 | 94.59  |
| 21049 | Clark County, KY        | 93.45  | 102    | 79.27  | 98.84  | 91.64  |
| 21059 | Daviess County, KY      | 99.18  | 109.86 | 121.56 | 106.12 | 111.6  |
| 21067 | Fayette County, KY      | 110.05 | 128.66 | 134.26 | 116.37 | 128.22 |
| 21081 | Grant County, KY        | 90.59  | 52.57  | 80.01  | 76.95  | 68.44  |
| 21089 | Greenup County, KY      | 94.52  | 87.52  | 78.55  | 112.22 | 91.41  |
| 21093 | Hardin County, KY       | 95.48  | 90.76  | 131.65 | 93.87  | 103.72 |
| 21101 | Henderson County, KY    | 99.09  | 105.95 | 76.39  | 103.24 | 95.15  |
| 21103 | Henry County, KY        | 89.37  | 76.6   | 77.64  | 85.73  | 77.68  |
| 21111 | Jefferson County, KY    | 109.11 | 119.34 | 118.64 | 123.85 | 122.42 |
| 21113 | Jessamine County, KY    | 94.35  | 102.5  | 84.93  | 91.02  | 91.41  |
| 21117 | Kenton County, KY       | 104.06 | 117.51 | 88.49  | 119.32 | 109.28 |
| 21123 | Larue County, KY        | 89.43  | 63.3   | 84.72  | 65.93  | 69.47  |
| 21163 | Meade County, KY        | 93.39  | 46.63  | 84.9   | 78.41  | 69.46  |
| 21179 | Nelson County, KY       | 91.95  | 66.86  | 78.24  | 89.54  | 76.81  |
| 21185 | Oldham County, KY       | 94.48  | 74.42  | 80.9   | 81.7   | 78.36  |
| 21209 | Scott County, KY        | 95.24  | 97.32  | 80.79  | 97.28  | 90.72  |
| 21211 | Shelby County, KY       | 95.85  | 91.76  | 112.29 | 86.78  | 95.79  |
| 21215 | Spencer County, KY      | 91.13  | 31.97  | 75.02  | 76.42  | 60.36  |
| 21227 | Warren County, KY       | 101.86 | 102.72 | 124.59 | 100.77 | 109.46 |

| 21239 | Woodford County, KY             | 93.43  | 105.61 | 79.51  | 90.95  | 90.36  |
|-------|---------------------------------|--------|--------|--------|--------|--------|
| 22005 | Ascension Parish, LA            | 92.32  | 90.2   | 93.22  | 86.92  | 88.2   |
| 22015 | Bossier Parish, LA              | 95.13  | 94.84  | 83.39  | 90.35  | 88.54  |
| 22017 | Caddo Parish, LA                | 98.39  | 108.22 | 98.44  | 110.2  | 104.82 |
| 22019 | Calcasieu Parish, LA            | 95.68  | 105.58 | 123.81 | 94.14  | 106.07 |
| 22031 | De Soto Parish, LA              | 89.07  | 61.88  | 140.34 | 77.66  | 90.19  |
| 22033 | East Baton Rouge Parish, LA     | 103.91 | 113.92 | 97.85  | 114.04 | 109.39 |
| 22043 | Grant Parish, LA                | 88.67  | 34.23  | 66.17  | 64.67  | 53.79  |
| 22047 | Iberville Parish, LA            | 93.41  | 93.69  | 84.62  | 92.02  | 88.54  |
| 22051 | Jefferson Parish, LA            | 113.17 | 132.12 | 84.47  | 148.19 | 124.62 |
| 22055 | Lafayette Parish, LA            | 99.95  | 114.45 | 110.96 | 106.53 | 110.08 |
| 22057 | Lafourche Parish, LA            | 95.04  | 99.35  | 143.72 | 98.05  | 111.43 |
| 22063 | Livingston Parish, LA           | 93.18  | 62.05  | 84.88  | 75.38  | 73.3   |
| 22071 | Orleans Parish, LA              | 121.91 | 137.94 | 153.63 | 214.43 | 172.01 |
| 22073 | Ouachita Parish, LA             | 95.23  | 94.61  | 111.6  | 108.52 | 103.15 |
| 22075 | Plaquemines Parish, LA          | 90.01  | 91.73  | 81.72  | 104.87 | 90     |
| 22077 | Pointe Coupee Parish, LA        | 91.55  | 71.09  |        | 98.29  |        |
| 22079 | Rapides Parish, LA              | 93.23  | 98.11  | 100.74 | 101.17 | 97.87  |
| 22087 | St. Bernard Parish, LA          | 100.03 | 121.48 | 80.94  | 130.72 | 110.48 |
| 22089 | St. Charles Parish, LA          | 93.42  | 97.97  | 81.23  | 108.41 | 94.01  |
| 22095 | St. John the Baptist Parish, LA | 97.39  | 101.63 | 88.78  | 109.44 | 99.13  |
| 22099 | St. Martin Parish, LA           | 90.6   | 70.42  | 94.32  | 86.13  | 81.51  |
| 22103 | St. Tammany Parish, LA          | 95.66  | 94.37  | 97.06  | 109.33 | 98.87  |
| 22109 | Terrebonne Parish, LA           | 96.62  | 103.72 | 99.01  | 107.65 | 102.21 |
| 22111 | Union Parish, LA                | 89.87  | 71.18  | 70.25  | 78.43  | 71.48  |
| 22121 | West Baton Rouge Parish, LA     | 92.8   | 93.51  | 81.41  | 106.35 | 91.81  |
| 23001 | Androscoggin County, ME         | 94.76  | 103.78 | 136.26 | 91.39  | 108.27 |
| 23005 | Cumberland County, ME           | 98.75  | 114.38 | 138.89 | 90.26  | 113.36 |
| 23019 | Penobscot County, ME            | 92.4   | 98.83  | 131.29 | 77.32  | 99.95  |
| 23023 | Sagadahoc County, ME            | 91.37  | 75.85  | 95.72  | 87.89  | 84.47  |
| 23031 | York County, ME                 | 92.68  | 89.8   | 93.72  | 78.52  | 85.7   |
| 24001 | Allegany County, MD             | 94.56  | 117.81 | 106.32 | 116.79 | 111.21 |
| 24003 | Anne Arundel County, MD         | 105.04 | 115.29 | 100.72 | 118.53 | 112.5  |
| 24005 | Baltimore County, MD            | 109.47 | 130.43 | 100.71 | 118.19 | 118.58 |
| 24009 | Calvert County, MD              | 95.09  | 73.94  | 82.27  | 107.81 | 87.08  |
| 24013 | Carroll County, MD              | 95.33  | 95.07  | 100.64 | 94.25  | 95.35  |
| 24015 | Cecil County, MD                | 93.63  | 88.61  | 89.42  | 100.5  | 91.2   |
| 24017 | Charles County, MD              | 97.94  | 88.84  | 83.65  | 107.96 | 93.17  |
| 24021 | Frederick County, MD            | 97.32  | 108.73 | 104.01 | 100.82 | 103.44 |

| 24025 | Harford County, MD         | 100.16 | 109.82 | 96.6   | 99.78  | 102.01 |
|-------|----------------------------|--------|--------|--------|--------|--------|
| 24027 | Howard County, MD          | 104.93 | 128.35 | 97.95  | 107.27 | 112.17 |
| 24031 | Montgomery County, MD      | 117.8  | 129.94 | 123.29 | 116.7  | 127.72 |
| 24033 | Prince George's County, MD | 112.7  | 124.13 | 90.27  | 125.16 | 116.51 |
| 24035 | Queen Anne's County, MD    | 91.01  | 67.98  | 77.17  | 76.61  | 72.44  |
| 24039 | Somerset County, MD        | 91.18  | 73.8   | 82.53  | 110.34 | 86.69  |
| 24043 | Washington County, MD      | 97.32  | 110.91 | 127.59 | 95.52  | 109.9  |
| 24045 | Wicomico County, MD        | 96     | 106.22 | 124.92 | 114.15 | 113.05 |
| 24510 | Baltimore city, MD         | 163.61 | 143.97 | 183.84 | 196.44 | 190.94 |
| 25001 | Barnstable County, MA      |        |        |        | 119.45 |        |
| 25003 | Berkshire County, MA       |        |        |        | 95.18  |        |
| 25005 | Bristol County, MA         |        | 33.82  |        | 120.97 |        |
| 25009 | Essex County, MA           |        | 36.98  |        | 122.2  |        |
| 25011 | Franklin County, MA        |        |        |        | 83.51  |        |
| 25013 | Hampden County, MA         |        | 32.99  |        | 112.97 |        |
| 25015 | Hampshire County, MA       |        |        |        | 85.5   |        |
| 25017 | Middlesex County, MA       |        | 38.77  |        | 122.51 |        |
| 25021 | Norfolk County, MA         |        | 34.74  |        | 117.59 |        |
| 25023 | Plymouth County, MA        |        |        |        | 104.2  |        |
| 25025 | Suffolk County, MA         |        | 53.29  |        | 201.99 |        |
| 25027 | Worcester County, MA       |        | 30.9   |        | 98.17  |        |
| 26015 | Barry County, MI           | 90.18  | 57.23  | 87.88  | 75.47  | 71.8   |
| 26017 | Bay County, MI             | 96.11  | 112.33 | 108.4  | 104.1  | 106.61 |
| 26021 | Berrien County, MI         | 94.04  | 108.26 | 90.63  | 99.01  | 97.45  |
| 26025 | Calhoun County, MI         | 95.5   | 103.98 | 103.91 | 94.09  | 99.21  |
| 26027 | Cass County, MI            | 89.45  | 65.94  | 94.7   | 73.69  | 75.91  |
| 26037 | Clinton County, MI         | 91.92  | 77.85  | 131.4  | 63.62  | 88.88  |
| 26045 | Eaton County, MI           | 94.44  | 101.46 | 85.64  | 72.87  | 85.6   |
| 26049 | Genesee County, MI         | 97.37  | 109.34 | 123.51 | 103.52 | 110.66 |
| 26065 | Ingham County, MI          | 109.11 | 118.48 | 141.89 | 104.33 | 123.32 |
| 26067 | Ionia County, MI           | 92.27  | 71.44  | 96.34  | 76.97  | 80.1   |
| 26075 | Jackson County, MI         | 94.83  | 98.29  | 137.01 | 86.66  | 105.3  |
| 26077 | Kalamazoo County, MI       | 97.5   | 106.35 | 113.21 | 90.33  | 102.33 |
| 26081 | Kent County, MI            | 99.67  | 119.56 | 128.07 | 96.76  | 113.92 |
| 26087 | Lapeer County, MI          | 92.22  | 70.09  | 131.99 | 63.03  | 86.52  |
| 26093 | Livingston County, MI      | 92.3   | 81.87  | 104.2  | 80.88  | 87.13  |
| 26099 | Macomb County, MI          | 107.83 | 131.48 | 92.09  | 106.26 | 111.9  |
| 26115 | Monroe County, MI          | 92.58  | 95.56  | 109.24 | 75.47  | 91.42  |
| 26121 | Muskegon County, MI        | 96.94  | 110.29 | 96.74  | 107.62 | 103.66 |

| 26123 | Newaygo County, MI    | 89.64  | 63.71  | 82.85  | 79.68  | 73.43  |
|-------|-----------------------|--------|--------|--------|--------|--------|
| 26125 | Oakland County, MI    | 103.79 | 122.43 | 99.39  | 107.48 | 110.46 |
| 26139 | Ottawa County, MI     | 96.62  | 104.73 | 106.96 | 84.83  | 97.83  |
| 26145 | Saginaw County, MI    | 96.26  | 111.36 | 121.05 | 101.28 | 109.46 |
| 26147 | St. Clair County, MI  | 95.48  | 93.49  | 115.33 | 87.56  | 97.42  |
| 26159 | Van Buren County, MI  | 90.64  | 78.99  | 85.3   | 71.88  | 76.88  |
| 26161 | Washtenaw County, MI  | 105.17 | 117.06 | 155.39 | 87.03  | 120.43 |
| 26163 | Wayne County, MI      | 112.5  | 126.5  | 136.09 | 148.34 | 139    |
| 27003 | Anoka County, MN      | 101.07 | 111.72 | 98.03  | 105.23 | 105.07 |
| 27009 | Benton County, MN     | 99.34  | 111.8  | 83.26  | 89.21  | 94.82  |
| 27013 | Blue Earth County, MN | 97.06  |        | 81.38  | 83.73  |        |
| 27017 | Carlton County, MN    | 89.72  | 89.44  | 86.19  | 89.97  | 85.88  |
| 27019 | Carver County, MN     | 94.8   | 100.1  | 82.7   | 100.41 | 93.05  |
| 27025 | Chisago County, MN    | 91.23  | 72.57  | 80.16  | 79.33  | 75.77  |
| 27027 | Clay County, MN       | 101.35 | 118.95 | 84.41  | 81.24  | 95.56  |
| 27037 | Dakota County, MN     | 104.83 | 115.9  | 86.85  | 107.32 | 104.71 |
| 27039 | Dodge County, MN      | 90.15  | 114.35 | 78.13  | 95.81  | 93.19  |
| 27053 | Hennepin County, MN   | 114.74 | 127.82 | 151.96 | 129.69 | 139.24 |
| 27055 | Houston County, MN    | 89.84  | 94.39  | 70.75  | 100.51 | 85.94  |
| 27059 | Isanti County, MN     | 91.07  | 89.01  | 80.16  | 86.9   | 83.3   |
| 27103 | Nicollet County, MN   | 97.81  |        | 77.6   | 107.27 |        |
| 27109 | Olmsted County, MN    | 98.99  | 108.08 | 166.15 | 100.7  | 123.35 |
| 27119 | Polk County, MN       | 89.65  | 106.65 | 85.6   | 58.59  | 81.2   |
| 27123 | Ramsey County, MN     | 117.31 | 135.35 | 105.13 | 148.75 | 133.66 |
| 27137 | St. Louis County, MN  | 95.96  | 113.02 | 140.27 | 103.63 | 116.7  |
| 27139 | Scott County, MN      | 96.04  | 104.74 | 81.51  | 85.26  | 89.75  |
| 27141 | Sherburne County, MN  | 92.57  | 80.55  | 85.4   | 79.35  | 80.37  |
| 27145 | Stearns County, MN    | 95.49  | 112.29 | 109.13 | 96.54  | 104.25 |
| 27157 | Wabasha County, MN    | 89.66  | 101.77 | 80.16  | 119.28 | 97.11  |
| 27163 | Washington County, MN | 100.91 | 108.44 | 82.51  | 109.35 | 100.38 |
| 27171 | Wright County, MN     | 92.03  | 88.12  | 85.17  | 74.14  | 80.87  |
| 28029 | Copiah County, MS     | 90.59  | 89.53  | 72.41  | 81.93  | 79.29  |
| 28033 | DeSoto County, MS     | 95.25  | 88.58  | 99.48  | 78.18  | 87.83  |
| 28035 | Forrest County, MS    | 95.34  | 105.53 | 96.31  | 100.75 | 99.35  |
| 28039 | George County, MS     | 90.76  | 69.74  | 77.91  | 92.68  | 78.23  |
| 28045 | Hancock County, MS    | 92.04  | 77.68  | 80.99  | 112.7  | 88.44  |
| 28047 | Harrison County, MS   | 97.88  | 105.23 | 107.35 | 113.32 | 107.51 |
| 28049 | Hinds County, MS      | 100.02 | 107.02 | 141.59 | 102.57 | 116.18 |
| 28059 | Jackson County, MS    | 95.32  | 88.99  | 120.77 | 104.57 | 103.05 |

| 28073 | Lamar County, MS           | 90.94  | 85.24  | 82.62  | 69.99  | 77.5   |
|-------|----------------------------|--------|--------|--------|--------|--------|
| 28089 | Madison County, MS         | 96.21  | 91.29  | 91.18  | 87.79  | 89.4   |
| 28093 | Marshall County, MS        | 89.58  | 45.7   | 77.07  | 80.95  | 66.29  |
| 28121 | Rankin County, MS          | 94.27  | 82.77  | 81.61  | 77.7   | 79.89  |
| 28127 | Simpson County, MS         | 89.83  | 72.44  | 81.01  | 94.49  | 80.34  |
| 28131 | Stone County, MS           | 90.38  | 88.05  | 70.63  | 94.96  | 82.31  |
| 28137 | Tate County, MS            | 92.63  | 63.13  | 71.62  | 95.88  | 75.76  |
| 28143 | Tunica County, MS          | 88.41  | 60.42  | 81.24  | 70.41  | 68.56  |
| 29003 | Andrew County, MO          | 88.73  | 86.17  | 72.6   | 76.11  | 75.86  |
| 29013 | Bates County, MO           | 89.22  | 111.73 | 80.53  | 106.69 | 96.26  |
| 29019 | Boone County, MO           | 98.98  | 107.9  | 126.76 | 103.07 | 111.6  |
| 29021 | Buchanan County, MO        | 101.7  | 120.56 | 95.28  | 141.17 | 118.55 |
| 29027 | Callaway County, MO        | 90.4   | 82.96  | 97.28  | 84.65  | 85.87  |
| 29031 | Cape Girardeau County, MO  | 95.78  |        | 114.42 | 102.52 |        |
| 29037 | Cass County, MO            | 94.15  | 94.94  | 79.62  | 83.45  | 84.89  |
| 29043 | Christian County, MO       | 91.93  | 89.25  | 81.1   | 90.63  | 85.12  |
| 29047 | Clay County, MO            | 97.62  | 113.96 | 88.28  | 98.64  | 99.52  |
| 29049 | Clinton County, MO         | 90.37  | 103.72 | 78.89  | 114.83 | 96.15  |
| 29051 | Cole County, MO            | 94.77  | 101.06 | 122.96 | 85.07  | 101.22 |
| 29055 | Crawford County, MO (pt.)* | 89.11  |        | 71.96  | 88.13  |        |
| 29071 | Franklin County, MO        | 91.1   | 94.49  | 82.43  | 93.59  | 87.87  |
| 29077 | Greene County, MO          | 100.74 | 119.9  | 88.95  | 115.29 | 107.86 |
| 29095 | Jackson County, MO         | 105.14 | 126.53 | 136.74 | 127.96 | 130.44 |
| 29097 | Jasper County, MO          | 94.9   | 113.72 | 88.44  | 114.86 | 103.76 |
| 29099 | Jefferson County, MO       | 96.02  | 87.54  | 85.42  | 99.04  | 89.9   |
| 29107 | Lafayette County, MO       | 89.16  | 87.92  | 74.98  | 94.53  | 83.13  |
| 29113 | Lincoln County, MO         | 90.59  | 52.94  | 85.39  | 93.02  | 75.34  |
| 29135 | Moniteau County, MO        | 90.4   | 117.93 | 68.41  | 89.59  | 89.37  |
| 29145 | Newton County, MO          | 92.11  | 83.25  | 102.74 | 93.49  | 91.02  |
| 29165 | Platte County, MO          | 98.15  | 104.96 | 79.77  | 94.12  | 92.73  |
| 29177 | Ray County, MO             | 89.65  | 108.59 | 73.35  | 65.04  | 79.98  |
| 29183 | St. Charles County, MO     | 104.37 | 118.4  | 86.54  | 121.39 | 109.7  |
| 29189 | St. Louis County, MO       | 107.75 | 126.19 | 95.35  | 120.59 | 115.76 |
| 29219 | Warren County, MO          | 90.25  | 65.09  | 88.5   | 88.94  | 78.76  |
| 29221 | Washington County, MO      | 89.88  | 65.15  | 71.89  | 94.61  | 75.21  |
| 29225 | Webster County, MO         | 89.7   | 58.65  | 78.35  | 95.58  | 75.45  |
| 29510 | St. Louis city, MO         | 126.98 | 137.55 | 194.29 | 185.95 | 177.33 |
| 30009 | Carbon County, MT          | 88.78  | 68.92  | 85.23  | 93.01  | 79.76  |
| 30013 | Cascade County, MT         | 97.85  | 123.74 | 127.17 | 118.61 | 121.28 |

| 30063 | Missoula County, MT     | 98.92  | 119.3  | 111.04 | 110.74 | 112.64 |
|-------|-------------------------|--------|--------|--------|--------|--------|
| 30111 | Yellowstone County, MT  | 103.87 | 120.17 | 119.97 | 115.07 | 118.66 |
| 31025 | Cass County, NE         | 89.1   | 86.96  | 86.25  | 95.22  | 86.59  |
| 31043 | Dakota County, NE       | 98.92  | 114.43 | 75.16  | 122.4  | 103.44 |
| 31055 | Douglas County, NE      | 110.08 | 132.45 | 125.37 | 138.38 | 133.58 |
| 31109 | Lancaster County, NE    | 109.75 | 133.02 | 115.33 | 121.45 | 125.13 |
| 31153 | Sarpy County, NE        | 101.37 | 112.49 | 87.29  | 118.08 | 106.08 |
| 31155 | Saunders County, NE     | 88.71  | 95.5   | 88.74  | 85.06  | 86.74  |
| 31159 | Seward County, NE       | 89.14  | 99.79  | 77.47  | 81.06  | 83.4   |
| 31177 | Washington County, NE   | 89.99  | 86.51  | 117.82 | 94.88  | 96.59  |
| 32003 | Clark County, NV        | 119.01 | 116.44 | 140.45 | 122.06 | 130.94 |
| 32031 | Washoe County, NV       | 103.05 | 110.72 | 131.45 | 103.68 | 115.45 |
| 32510 | Carson City, NV         | 104.88 | 133.53 | 80.1   | 118.62 | 111.73 |
| 33011 | Hillsborough County, NH | 101.22 | 116.91 | 121.07 | 97.04  | 111.45 |
| 33015 | Rockingham County, NH   | 94     | 101.41 | 97.51  | 82.02  | 92.08  |
| 33017 | Strafford County, NH    | 95.77  | 105.8  | 88.23  | 82.45  | 91.23  |
| 34001 | Atlantic County, NJ     | 103    | 114.8  | 142.81 | 120.73 | 125.7  |
| 34003 | Bergen County, NJ       | 128.56 | 150.29 | 86.86  | 143.25 | 134.43 |
| 34005 | Burlington County, NJ   | 100.52 | 120.12 | 99.61  | 99.94  | 106.38 |
| 34007 | Camden County, NJ       | 115.67 | 137.68 | 105.55 | 141.06 | 131.58 |
| 34009 | Cape May County, NJ     | 97.81  | 117.44 | 101.22 | 145.73 | 119.65 |
| 34011 | Cumberland County, NJ   | 99.51  | 113.21 | 119.51 | 98.78  | 109.8  |
| 34013 | Essex County, NJ        | 161.02 | 146.99 | 128.46 | 148.71 | 158.5  |
| 34015 | Gloucester County, NJ   | 100.59 | 121.22 | 87.46  | 104.71 | 104.41 |
| 34017 | Hudson County, NJ       | 223.23 | 156.67 | 92.82  | 176.49 | 178.73 |
| 34019 | Hunterdon County, NJ    | 93.84  | 90.14  | 95.2   | 74     | 85.21  |
| 34021 | Mercer County, NJ       | 114.81 | 128.87 | 109.53 | 119.34 | 122.92 |
| 34023 | Middlesex County, NJ    | 118.29 | 135.37 | 114.47 | 132.03 | 131.64 |
| 34025 | Monmouth County, NJ     | 105.74 | 133.26 | 84.28  | 121.16 | 114.04 |
| 34027 | Morris County, NJ       | 103    | 125.29 | 87.76  | 100.05 | 105.09 |
| 34029 | Ocean County, NJ        | 105.44 | 110.28 | 91.35  | 129.32 | 111.5  |
| 34031 | Passaic County, NJ      | 143.82 | 148.45 | 101.63 | 135.66 | 140.93 |
| 34033 | Salem County, NJ        | 94.41  | 98     | 80.11  | 92.91  | 89.08  |
| 34035 | Somerset County, NJ     | 101.83 | 120.78 | 86.24  | 103.35 | 103.86 |
| 34037 | Sussex County, NJ       | 95.74  | 89.17  | 86.54  | 87.85  | 87.14  |
| 34039 | Union County, NJ        | 140.17 | 153.96 | 89.87  | 148.9  | 141.99 |
| 34041 | Warren County, NJ       | 95.86  | 119.17 | 85.21  | 97.52  | 99.29  |
| 35001 | Bernalillo County, NM   | 110.26 | 122.46 | 113.45 | 131.01 | 124.38 |
| 35013 | Dona Ana County, NM     | 99.2   | 106.04 | 114.72 | 103.66 | 107.46 |

| 35043 | Sandoval County, NM    | 97.97  | 91.24  | 110.1  | 85.16  | 95.09  |
|-------|------------------------|--------|--------|--------|--------|--------|
| 35045 | San Juan County, NM    | 93.52  | 88.26  | 135.96 | 78.81  | 98.91  |
| 35049 | Santa Fe County, NM    | 99.91  | 106.29 | 116.83 | 88.05  | 103.5  |
| 35061 | Valencia County, NM    | 94.94  | 85.92  | 108.47 | 76.38  | 89.17  |
| 36001 | Albany County, NY      | 107.1  | 128.39 | 135.96 | 104.63 | 124.04 |
| 36005 | Bronx County, NY       | 336.7  | 143.95 | 100.25 | 211.61 | 224.01 |
| 36007 | Broome County, NY      | 99.92  | 115.8  | 121.53 | 93.89  | 109.84 |
| 36015 | Chemung County, NY     | 98.96  | 117.49 | 130.79 | 99.06  | 114.63 |
| 36027 | Dutchess County, NY    | 97.07  | 110.29 | 128.55 | 81.19  | 105.4  |
| 36029 | Erie County, NY        | 109.71 | 131.45 | 111.78 | 93.59  | 114.7  |
| 36043 | Herkimer County, NY    | 96.91  | 100.82 | 82.72  | 80.37  | 87.62  |
| 36047 | Kings County, NY       | 355.5  | 142.16 | 199.99 | 225.25 | 265.2  |
| 36051 | Livingston County, NY  | 93.13  | 102.59 | 78.75  | 53.09  | 77.11  |
| 36053 | Madison County, NY     | 94.67  | 96.7   | 85.84  | 57.89  | 79.49  |
| 36055 | Monroe County, NY      | 106.45 | 123.67 | 121.06 | 93.28  | 114.04 |
| 36059 | Nassau County, NY      | 128.98 | 149.38 | 111.6  | 160.85 | 147.65 |
| 36061 | New York County, NY    | 654.01 | 144.57 | 400.25 | 230.33 | 425.15 |
| 36063 | Niagara County, NY     | 100.04 | 115.62 | 92.59  | 94.32  | 100.81 |
| 36065 | Oneida County, NY      | 101.65 | 107.32 | 112.12 | 84.48  | 101.76 |
| 36067 | Onondaga County, NY    | 104.46 | 122.19 | 142.75 | 96.45  | 120.8  |
| 36069 | Ontario County, NY     | 94.36  | 101.34 | 91.19  | 62.58  | 84.03  |
| 36071 | Orange County, NY      | 101.31 | 113.59 | 90.33  | 87.33  | 97.65  |
| 36073 | Orleans County, NY     | 94.19  | 97.46  | 78.22  | 53.47  | 75.78  |
| 36075 | Oswego County, NY      | 96.64  | 90.83  | 108.43 | 70.57  | 89.4   |
| 36079 | Putnam County, NY      | 94.19  | 95.77  | 83.82  | 88.92  | 88.21  |
| 36081 | Queens County, NY      | 266.34 | 147.42 | 91.93  | 224.01 | 204.16 |
| 36083 | Rensselaer County, NY  | 99.2   | 109.08 | 97.62  | 92.25  | 99.41  |
| 36085 | Richmond County, NY    | 175.08 | 131.67 | 78.94  | 179.98 | 152.34 |
| 36087 | Rockland County, NY    | 117.77 | 134.18 | 81.37  | 105.52 | 112.27 |
| 36091 | Saratoga County, NY    | 95.36  | 98.37  | 102.26 | 80.9   | 92.7   |
| 36093 | Schenectady County, NY | 107.32 | 130.66 | 104.18 | 110.94 | 116.78 |
| 36095 | Schoharie County, NY   | 90.59  | 78.79  | 84.01  | 56.05  | 71.39  |
| 36103 | Suffolk County, NY     | 105.86 | 126.74 | 94.53  | 115.53 | 113.48 |
| 36107 | Tioga County, NY       | 94.68  | 75.76  | 82.48  | 64.79  | 74     |
| 36109 | Tompkins County, NY    | 102.44 | 95.84  | 144.53 | 72.43  | 104.82 |
| 36111 | Ulster County, NY      | 95.12  | 96.8   | 124.18 | 81.42  | 99.22  |
| 36113 | Warren County, NY      | 94.99  | 105.93 | 183.56 | 89.94  | 123.51 |
| 36115 | Washington County, NY  | 92.47  | 80.23  | 80.51  | 59.21  | 72.33  |
| 36117 | Wayne County, NY       | 92.68  | 85.72  | 85.91  | 55.37  | 74.62  |

| 36119 | Westchester County, NY | 129.24 | 146.99 | 93.74  | 123.66 | 129.58 |
|-------|------------------------|--------|--------|--------|--------|--------|
| 37001 | Alamance County, NC    | 95.78  | 102.85 | 94.52  | 96.28  | 96.66  |
| 37003 | Alexander County, NC   | 91.03  | 78.52  | 79.96  | 55.54  | 70     |
| 37007 | Anson County, NC       | 89.44  | 65.32  | 80.36  | 52.48  | 64.49  |
| 37019 | Brunswick County, NC   | 90.81  | 69.18  | 88.65  | 85.96  | 79.34  |
| 37021 | Buncombe County, NC    | 95.14  | 101.18 | 126.22 | 94.85  | 105.5  |
| 37023 | Burke County, NC       | 90.8   | 78.73  | 87.53  | 75.57  | 78.72  |
| 37025 | Cabarrus County, NC    | 96.2   | 97.46  | 88.76  | 88     | 90.65  |
| 37027 | Caldwell County, NC    | 92.41  | 74.22  | 123.75 | 80.6   | 90.83  |
| 37035 | Catawba County, NC     | 93.56  | 91.54  | 85.36  | 88.36  | 86.99  |
| 37037 | Chatham County, NC     | 91.14  | 56.42  | 79.76  | 62.63  | 65.23  |
| 37051 | Cumberland County, NC  | 100.01 | 104.64 | 91.45  | 90.81  | 95.86  |
| 37053 | Currituck County, NC   | 90.42  | 69.81  | 77.63  | 76.98  | 73.1   |
| 37059 | Davie County, NC       | 91.08  | 61.13  | 81.22  | 60.37  | 66.45  |
| 37063 | Durham County, NC      | 102.68 | 108.43 | 103.83 | 103.7  | 105.89 |
| 37065 | Edgecombe County, NC   | 91.45  | 83.77  | 99.4   | 93.79  | 90.02  |
| 37067 | Forsyth County, NC     | 98.47  | 107.56 | 110.15 | 95.01  | 103.53 |
| 37069 | Franklin County, NC    | 91.13  | 52.43  | 78.63  | 63.74  | 63.96  |
| 37071 | Gaston County, NC      | 95.33  | 103.37 | 110.64 | 94.2   | 101.12 |
| 37079 | Greene County, NC      | 90.47  | 47.46  | 83.61  | 40.96  | 56.56  |
| 37081 | Guilford County, NC    | 100.36 | 113.56 | 102.77 | 95.45  | 103.84 |
| 37087 | Haywood County, NC     | 91.09  | 79.15  | 80.84  | 102.68 | 85.39  |
| 37089 | Henderson County, NC   | 92.12  | 98.21  | 84.83  | 93.59  | 90.13  |
| 37093 | Hoke County, NC        | 91.51  | 57.98  | 83.07  | 70.19  | 69.27  |
| 37101 | Johnston County, NC    | 93.03  | 70.6   | 103.97 | 64.44  | 78.53  |
| 37115 | Madison County, NC     | 89.4   | 44.18  | 77.93  | 90.45  | 69.03  |
| 37119 | Mecklenburg County, NC | 105.91 | 115.35 | 135.51 | 101.84 | 118.52 |
| 37127 | Nash County, NC        | 91.58  | 88.78  | 88.52  | 79.45  | 83.68  |
| 37129 | New Hanover County, NC | 102.34 | 118.86 | 107.7  | 121.5  | 115.92 |
| 37133 | Onslow County, NC      | 94.97  | 82.72  | 104.59 | 82.75  | 88.95  |
| 37135 | Orange County, NC      | 99.4   | 106.99 | 120.04 | 75.56  | 100.63 |
| 37141 | Pender County, NC      | 91.15  | 64.41  | 81.67  | 60.61  | 67.72  |
| 37145 | Person County, NC      | 91.24  | 74.11  | 81.98  | 61.12  | 71.08  |
| 37147 | Pitt County, NC        | 98.36  | 104.23 | 117.55 | 87.14  | 102.3  |
| 37151 | Randolph County, NC    | 92.22  | 84.74  | 100.63 | 57.18  | 79.39  |
| 37157 | Rockingham County, NC  | 90.85  | 72.36  | 83.7   | 76.47  | 75.79  |
| 37169 | Stokes County, NC      | 90.59  | 52.98  | 81.84  | 64.72  | 65.29  |
| 37179 | Union County, NC       | 94.98  | 81.73  | 100.88 | 84.45  | 88.01  |
| 37183 | Wake County, NC        | 103.07 | 115.17 | 134.61 | 96.6   | 115.62 |

| 37191 | Wayne County, NC       | 93.55  | 78.79  | 130.76 | 84.88  | 96.2   |
|-------|------------------------|--------|--------|--------|--------|--------|
| 37197 | Yadkin County, NC      | 90.06  | 70.68  | 79.45  | 49.29  | 65.08  |
| 38015 | Burleigh County, ND    | 96.52  | 118.46 | 128.76 | 90.68  | 110.87 |
| 38017 | Cass County, ND        | 99.52  | 125.9  | 113.31 | 97.15  | 111.34 |
| 38035 | Grand Forks County, ND | 104.24 | 124.99 | 97.01  | 96.71  | 107.25 |
| 38059 | Morton County, ND      | 91.13  | 108.21 | 82.17  | 85.86  | 89.69  |
| 39003 | Allen County, OH       | 95.85  | 114.27 | 117.83 | 118.07 | 114.54 |
| 39013 | Belmont County, OH     | 92.89  | 98.58  | 83.73  | 112.11 | 95.99  |
| 39015 | Brown County, OH       | 90.42  | 54.19  | 85.62  | 78.68  | 71.22  |
| 39017 | Butler County, OH      | 101.42 | 116.84 | 94.22  | 101.13 | 104.3  |
| 39019 | Carroll County, OH     | 89.77  | 69.05  | 94.41  | 68.25  | 75.19  |
| 39023 | Clark County, OH       | 96.98  | 111.55 | 97.15  | 102.52 | 102.6  |
| 39025 | Clermont County, OH    | 98.23  | 97.66  | 83.05  | 84.14  | 88.34  |
| 39035 | Cuyahoga County, OH    | 112.92 | 133.64 | 119.54 | 109.64 | 123.93 |
| 39041 | Delaware County, OH    | 97.21  | 109.37 | 84.07  | 87.68  | 93.15  |
| 39043 | Erie County, OH        | 96.77  | 121.77 | 104.84 | 102.29 | 108.11 |
| 39045 | Fairfield County, OH   | 95.2   | 100.29 | 89.76  | 89.15  | 91.91  |
| 39049 | Franklin County, OH    | 111.37 | 131.41 | 124.87 | 127.88 | 130.18 |
| 39051 | Fulton County, OH      | 90.59  | 113.35 | 82.43  | 93.65  | 93.69  |
| 39055 | Geauga County, OH      | 90.84  | 82.83  | 86.85  | 50.2   | 71.79  |
| 39057 | Greene County, OH      | 97.09  | 114.93 | 85.08  | 94.01  | 97.19  |
| 39061 | Hamilton County, OH    | 110.12 | 134.12 | 141.56 | 113.68 | 131.43 |
| 39081 | Jefferson County, OH   | 95.1   | 103.84 | 109.52 | 107.8  | 105.14 |
| 39085 | Lake County, OH        | 100.55 | 123.58 | 82.99  | 88.29  | 98.55  |
| 39087 | Lawrence County, OH    | 93.75  | 81.53  | 83.82  | 104.35 | 88.45  |
| 39089 | Licking County, OH     | 95.01  | 99.59  | 98.19  | 106.48 | 99.77  |
| 39093 | Lorain County, OH      | 98.61  | 117.13 | 93.18  | 95.05  | 101.26 |
| 39095 | Lucas County, OH       | 105.01 | 131.81 | 114.29 | 116.4  | 121.33 |
| 39097 | Madison County, OH     | 92.38  | 85.12  | 84.52  | 84.97  | 83.25  |
| 39099 | Mahoning County, OH    | 98.98  | 121.53 | 107.96 | 102.09 | 109.66 |
| 39103 | Medina County, OH      | 96.03  | 105.54 | 93.2   | 57.23  | 84.83  |
| 39109 | Miami County, OH       | 92.97  | 103.49 | 85.25  | 95.62  | 92.84  |
| 39113 | Montgomery County, OH  | 102.99 | 130.21 | 114.82 | 117.4  | 120.67 |
| 39117 | Morrow County, OH      | 89.85  | 49.6   | 83.41  | 46.82  | 58.82  |
| 39123 | Ottawa County, OH      | 93.01  | 98.23  | 86.34  | 94.39  | 91.15  |
| 39129 | Pickaway County, OH    | 95.16  | 82.72  | 83.74  | 78.2   | 80.99  |
| 39133 | Portage County, OH     | 94.89  | 103.8  | 90.32  | 100.22 | 96.6   |
| 39135 | Preble County, OH      | 90.05  | 70.46  | 86.69  | 100.99 | 83.63  |
| 39139 | Richland County, OH    | 94.98  | 105.89 | 118.65 | 103.59 | 107.3  |

| 39151 | Stark County, OH      | 98.73  | 120.66 | 98.8   | 120.61 | 112.26 |
|-------|-----------------------|--------|--------|--------|--------|--------|
| 39153 | Summit County, OH     | 101.67 | 125.68 | 109.41 | 114.42 | 116.17 |
| 39155 | Trumbull County, OH   | 95.85  | 111.81 | 91.49  | 95.52  | 98.31  |
| 39159 | Union County, OH      | 94.04  | 77.41  | 81.94  | 86.51  | 81.01  |
| 39165 | Warren County, OH     | 97.43  | 106.62 | 84.37  | 88.63  | 92.75  |
| 39167 | Washington County, OH | 93.06  | 88.2   | 86.67  | 83.86  | 84.77  |
| 39173 | Wood County, OH       | 94.89  | 111.78 | 91.96  | 82.11  | 93.91  |
| 40017 | Canadian County, OK   | 97.03  | 97.68  | 82.74  | 92.01  | 90.35  |
| 40027 | Cleveland County, OK  | 101.04 | 107.98 | 106.44 | 102.24 | 105.59 |
| 40031 | Comanche County, OK   | 99.03  | 118.45 | 98.2   | 116.33 | 110.11 |
| 40037 | Creek County, OK      | 90.09  | 85.48  | 84.46  | 104.69 | 88.85  |
| 40051 | Grady County, OK      | 91.37  | 75.37  | 86.82  | 102.85 | 86.23  |
| 40079 | Le Flore County, OK   | 89.15  | 67.37  | 83.45  | 99.19  | 80.78  |
| 40083 | Logan County, OK      | 89.7   | 68.27  | 90.56  | 98.34  | 83.21  |
| 40087 | McClain County, OK    | 89.63  | 80.94  | 81.73  | 88.92  | 81.43  |
| 40109 | Oklahoma County, OK   | 103.44 | 120.48 | 122.5  | 117.89 | 120.32 |
| 40111 | Okmulgee County, OK   | 89.76  | 90.51  | 83.84  | 122.81 | 95.86  |
| 40113 | Osage County, OK      | 93.63  | 66.07  | 86.07  | 96.84  | 81.87  |
| 40117 | Pawnee County, OK     | 88.73  | 75.14  | 77.53  | 99.62  | 81.37  |
| 40131 | Rogers County, OK     | 92.33  | 79.74  | 87.59  | 95.45  | 85.82  |
| 40135 | Sequoyah County, OK   | 89.78  | 72.88  | 91.9   | 101.22 | 86.03  |
| 40143 | Tulsa County, OK      | 102.6  | 121.46 | 117.13 | 113.15 | 117.17 |
| 40145 | Wagoner County, OK    | 93.2   | 77.7   | 83.08  | 102.13 | 86.14  |
| 41003 | Benton County, OR     | 100.72 | 123.18 | 126.52 | 95.34  | 114.46 |
| 41005 | Clackamas County, OR  | 101.8  | 126.17 | 90.03  | 96.25  | 104.5  |
| 41009 | Columbia County, OR   | 93.28  | 102.74 | 80.42  | 84.73  | 87.73  |
| 41017 | Deschutes County, OR  | 95.73  | 115.65 | 115.3  | 80.19  | 102.17 |
| 41029 | Jackson County, OR    | 97.76  | 122.2  | 122.65 | 91.71  | 110.84 |
| 41039 | Lane County, OR       | 101.73 | 127.48 | 138.05 | 98.88  | 120.9  |
| 41047 | Marion County, OR     | 101.62 | 130.36 | 123.77 | 101.1  | 117.96 |
| 41051 | Multnomah County, OR  | 120.53 | 142.82 | 150.58 | 166.68 | 157.06 |
| 41053 | Polk County, OR       | 94.97  | 105.79 | 80.13  | 83.85  | 88.86  |
| 41067 | Washington County, OR | 110.39 | 132.91 | 85.02  | 113.1  | 113.09 |
| 41071 | Yamhill County, OR    | 99.08  | 122.85 | 81.32  | 93.49  | 98.97  |
| 42003 | Allegheny County, PA  | 109.54 | 133.89 | 145.4  | 135.7  | 139.34 |
| 42005 | Armstrong County, PA  | 92.89  | 85.75  | 101.54 | 84.86  | 88.95  |
| 42007 | Beaver County, PA     | 95.17  | 110.16 | 84.42  | 111.13 | 100.28 |
| 42011 | Berks County, PA      | 108.58 | 126.11 | 116    | 110.71 | 119.4  |
| 42013 | Blair County, PA      | 97.22  | 121.95 | 124.31 | 123.01 | 121.01 |

| 42017 | Bucks County, PA        | 102.39 | 126.03 | 79.87  | 99.58  | 102.49 |
|-------|-------------------------|--------|--------|--------|--------|--------|
| 42019 | Butler County, PA       | 93.68  | 105.26 | 120.02 | 79.27  | 99.44  |
| 42021 | Cambria County, PA      | 95.43  | 107.43 | 120.16 | 119.48 | 113.43 |
| 42025 | Carbon County, PA       | 93.36  | 98.43  | 90.96  | 97.65  | 93.81  |
| 42027 | Centre County, PA       | 110.1  | 115.7  | 149.49 | 91.83  | 121.21 |
| 42029 | Chester County, PA      | 98.81  | 117.12 | 91.2   | 89.11  | 98.81  |
| 42041 | Cumberland County, PA   | 98.59  | 111.24 | 85.52  | 112.72 | 102.55 |
| 42043 | Dauphin County, PA      | 104.58 | 124.71 | 129.24 | 125.68 | 126.61 |
| 42045 | Delaware County, PA     | 119.69 | 141.69 | 83.25  | 137.9  | 126.07 |
| 42049 | Erie County, PA         | 102.74 | 130.88 | 122.48 | 102.4  | 118.48 |
| 42051 | Fayette County, PA      | 93.03  | 102.25 | 96.86  | 108.42 | 100.17 |
| 42069 | Lackawanna County, PA   | 101.86 | 133.13 | 134.53 | 123.5  | 129.39 |
| 42071 | Lancaster County, PA    | 102.63 | 119.9  | 128.6  | 94.47  | 114.41 |
| 42075 | Lebanon County, PA      | 96.31  | 122.77 | 84.72  | 116.98 | 106.56 |
| 42077 | Lehigh County, PA       | 111.48 | 134.36 | 115.73 | 137.75 | 131.38 |
| 42079 | Luzerne County, PA      | 99.44  | 121.47 | 93.27  | 114.55 | 109.08 |
| 42081 | Lycoming County, PA     | 97.09  | 120.85 | 113.98 | 117.91 | 115.74 |
| 42085 | Mercer County, PA       | 95.34  | 106.25 | 83.44  | 87.04  | 91.17  |
| 42091 | Montgomery County, PA   | 107.67 | 136.32 | 85.84  | 109.26 | 112.35 |
| 42095 | Northampton County, PA  | 103.88 | 133.01 | 101.8  | 124.28 | 119.89 |
| 42099 | Perry County, PA        | 89.79  | 63.67  | 91.33  | 79.02  | 75.93  |
| 42101 | Philadelphia County, PA | 206.38 | 144.48 | 178.43 | 209.98 | 207.19 |
| 42103 | Pike County, PA         | 91.08  | 56.19  | 144.75 | 90.61  | 94.51  |
| 42125 | Washington County, PA   | 95.07  | 106.69 | 93.55  | 102.25 | 99.23  |
| 42129 | Westmoreland County, PA | 95.84  | 111.77 | 104.88 | 108.5  | 106.63 |
| 42131 | Wyoming County, PA      | 90.4   | 51.38  | 86.24  | 74.76  | 69.28  |
| 42133 | York County, PA         | 99.69  | 112.24 | 115.21 | 96.33  | 107.42 |
| 44001 | Bristol County, RI      | 109.79 | 144.16 | 83.56  | 135.16 | 122.96 |
| 44003 | Kent County, RI         | 103.82 | 122.09 | 81.7   | 122.57 | 109.54 |
| 44005 | Newport County, RI      | 99.45  | 121.07 | 99.03  | 118.74 | 112.1  |
| 44007 | Providence County, RI   | 121.1  | 142.01 | 141.75 | 134.74 | 144.11 |
| 44009 | Washington County, RI   | 94.03  | 102.13 | 88.56  | 97.1   | 94.26  |
| 45003 | Aiken County, SC        | 93.29  | 79.37  | 103.25 | 96.65  | 91.33  |
| 45007 | Anderson County, SC     | 92.29  | 82.54  | 110.42 | 81.7   | 89.56  |
| 45015 | Berkeley County, SC     | 98.3   | 88.34  | 80.72  | 78.85  | 83     |
| 45019 | Charleston County, SC   | 103.2  | 119.32 | 138.48 | 116.56 | 124.5  |
| 45031 | Darlington County, SC   | 91.78  | 86.08  | 84.55  | 73.08  | 79.62  |
| 45035 | Dorchester County, SC   | 103.61 | 98.38  | 81.02  | 84.79  | 89.83  |
| 45037 | Edgefield County, SC    | 89.95  | 55.96  | 76.27  | 60.96  | 63.08  |

| 45039 | Fairfield County, SC   | 89.55  | 49.53  | 76.12  | 74.02  | 65     |
|-------|------------------------|--------|--------|--------|--------|--------|
| 45041 | Florence County, SC    | 96.07  | 90.47  | 109.63 | 83.71  | 93.64  |
| 45045 | Greenville County, SC  | 98.68  | 106.59 | 100.39 | 91.07  | 98.97  |
| 45051 | Horry County, SC       | 94.78  | 90.85  | 112.78 | 101.88 | 100.09 |
| 45055 | Kershaw County, SC     | 90.43  | 61.7   | 129.24 | 61.49  | 81.95  |
| 45059 | Laurens County, SC     | 89.91  | 59.53  | 87.21  | 79.89  | 73.63  |
| 45063 | Lexington County, SC   | 94.92  | 94.04  | 88     | 80.44  | 86.54  |
| 45077 | Pickens County, SC     | 92.45  | 92.02  | 97.27  | 82.26  | 88.63  |
| 45079 | Richland County, SC    | 101.53 | 109.51 | 144.33 | 110.91 | 120.94 |
| 45083 | Spartanburg County, SC | 93.37  | 97.98  | 112.28 | 90.54  | 98.16  |
| 45085 | Sumter County, SC      | 93.59  | 86.69  | 119.72 | 90.32  | 96.94  |
| 45091 | York County, SC        | 95.01  | 95.83  | 94.28  | 80.22  | 89.05  |
| 46083 | Lincoln County, SD     | 92.75  | 107.03 | 82.73  | 77.53  | 87.38  |
| 46093 | Meade County, SD       | 89.23  | 75.07  | 81.4   | 103.16 | 83.84  |
| 46099 | Minnehaha County, SD   | 102.86 | 120.06 | 105.9  | 107.25 | 111.4  |
| 46103 | Pennington County, SD  | 96.18  | 101.49 | 117.26 | 95.04  | 103.15 |
| 47001 | Anderson County, TN    | 92.32  | 81.1   | 121.37 | 89.51  | 95.04  |
| 47009 | Blount County, TN      | 94.52  | 79.63  | 87.08  | 89.16  | 84.33  |
| 47011 | Bradley County, TN     | 94.75  | 85.38  | 114.48 | 87.22  | 94.26  |
| 47019 | Carter County, TN      | 93.3   | 77.41  | 129.08 | 96.48  | 98.82  |
| 47021 | Cheatham County, TN    | 93.65  | 56.61  | 86.41  | 61.81  | 67.92  |
| 47023 | Chester County, TN     | 91.73  | 79.08  | 69.11  | 55.42  | 66.93  |
| 47037 | Davidson County, TN    | 104.68 | 111.86 | 121.78 | 111.57 | 115.76 |
| 47043 | Dickson County, TN     | 91.19  | 65.43  | 90.57  | 73.7   | 75.01  |
| 47047 | Fayette County, TN     | 89.34  | 50.43  | 89.51  | 51.46  | 62.32  |
| 47057 | Grainger County, TN    | 89.49  | 45.66  | 74.08  | 70.51  | 62.01  |
| 47063 | Hamblen County, TN     | 95.73  | 85     | 142.29 | 95.5   | 105.85 |
| 47065 | Hamilton County, TN    | 98.48  | 101.33 | 119.36 | 103.4  | 107.13 |
| 47073 | Hawkins County, TN     | 90.78  | 69.01  | 90.1   | 81.51  | 78.33  |
| 47089 | Jefferson County, TN   | 91.49  | 63.63  | 91.38  | 79.72  | 76.69  |
| 47093 | Knox County, TN        | 99.46  | 102.38 | 136.24 | 96.83  | 111.03 |
| 47105 | Loudon County, TN      | 90.6   | 74.46  | 83.62  | 96.59  | 82.71  |
| 47111 | Macon County, TN       | 90.08  | 45.11  | 73.25  | 47.03  | 54.34  |
| 47113 | Madison County, TN     | 95.08  | 104.99 | 108.51 | 91.26  | 99.95  |
| 47115 | Marion County, TN      | 89.77  | 69.94  | 73.16  | 87.72  | 74.91  |
| 47125 | Montgomery County, TN  | 97.02  | 80.87  | 113.11 | 75.99  | 89.57  |
| 47147 | Robertson County, TN   | 91.68  | 72.06  | 85.62  | 63.1   | 72.35  |
| 47149 | Rutherford County, TN  | 97.98  | 90.6   | 108.29 | 83.25  | 93.72  |
| 47153 | Sequatchie County, TN  | 90.25  | 76.45  | 78.98  | 57.33  | 69.36  |

| 47157 | Shelby County, TN     | 105.33 | 109.94 | 122.61 | 114.9  | 116.68 |
|-------|-----------------------|--------|--------|--------|--------|--------|
| 47159 | Smith County, TN      | 90.53  | 70.87  | 66.08  | 83.13  | 71.76  |
| 47163 | Sullivan County, TN   | 93.76  | 86.37  | 119.66 | 101.34 | 100.36 |
| 47165 | Sumner County, TN     | 97.36  | 86.46  | 115.6  | 76.15  | 92.28  |
| 47167 | Tipton County, TN     | 92.75  | 59.76  | 87.84  | 64.39  | 69.9   |
| 47169 | Trousdale County, TN  | 90.52  | 71.81  | 67.37  | 64.82  | 66.68  |
| 47171 | Unicoi County, TN     | 94.94  | 90.3   | 80.78  | 113.03 | 93.38  |
| 47173 | Union County, TN      | 89.52  | 50.58  | 82.78  | 73.69  | 67.32  |
| 47179 | Washington County, TN | 94.93  | 91.12  | 94.03  | 93.77  | 91.74  |
| 47187 | Williamson County, TN | 97     | 85.43  | 133.03 | 87.19  | 100.84 |
| 47189 | Wilson County, TN     | 93.71  | 71.92  | 85.24  | 70.33  | 75.1   |
| 48007 | Aransas County, TX    | 91.9   | 104.27 | 84.03  | 122.27 | 100.78 |
| 48013 | Atascosa County, TX   | 89.05  | 79.5   | 85.77  | 94.63  | 83.87  |
| 48015 | Austin County, TX     | 88.89  | 64.78  | 86.07  | 82.34  | 75.38  |
| 48019 | Bandera County, TX    | 89.19  | 38.15  | 69.25  | 101.83 | 67.91  |
| 48021 | Bastrop County, TX    | 89.76  | 76.25  | 87.26  | 96.1   | 84.01  |
| 48027 | Bell County, TX       | 99.9   | 110.3  | 106.9  | 110.75 | 108.8  |
| 48029 | Bexar County, TX      | 107.69 | 116.02 | 115.57 | 118.94 | 118.4  |
| 48037 | Bowie County, TX      | 93.73  | 106.36 | 80.75  | 99.24  | 93.71  |
| 48039 | Brazoria County, TX   | 96.54  | 96.26  | 92.15  | 97.38  | 94.42  |
| 48041 | Brazos County, TX     | 105.72 | 112.86 | 101.13 | 110.13 | 109.43 |
| 48051 | Burleson County, TX   | 89.32  | 100.91 | 77.93  | 109.68 | 93     |
| 48055 | Caldwell County, TX   | 89.63  | 89.32  | 84.6   | 100.93 | 88.78  |
| 48057 | Calhoun County, TX    | 97.89  | 104.62 | 74.17  | 145.39 | 106.98 |
| 48061 | Cameron County, TX    | 100.34 | 102.76 | 87.93  | 110.32 | 100.42 |
| 48071 | Chambers County, TX   | 88.91  | 43.66  | 75.63  | 77.45  | 63.87  |
| 48077 | Clay County, TX       | 88.03  | 67.28  | 76.56  | 111.02 | 81.95  |
| 48085 | Collin County, TX     | 106.24 | 114.06 | 85.45  | 118.59 | 107.69 |
| 48091 | Comal County, TX      | 93.66  | 86.53  | 108.62 | 88.26  | 92.76  |
| 48099 | Coryell County, TX    | 97.23  | 77.14  | 87.93  | 86.13  | 83.7   |
| 48113 | Dallas County, TX     | 116.03 | 123.21 | 125.52 | 139.21 | 132.85 |
| 48119 | Delta County, TX      | 88.85  | 80.3   | 68.73  | 127.14 | 88.95  |
| 48121 | Denton County, TX     | 104.96 | 107.37 | 91.25  | 114.16 | 105.61 |
| 48135 | Ector County, TX      | 101.41 | 123.37 | 112.23 | 111.89 | 115.45 |
| 48139 | Ellis County, TX      | 92.65  | 86.97  | 84.65  | 100.12 | 88.75  |
| 48141 | El Paso County, TX    | 109.16 | 113.33 | 102.45 | 125.22 | 115.85 |
| 48157 | Fort Bend County, TX  | 104.19 | 96.2   | 101.96 | 111.59 | 104.41 |
| 48167 | Galveston County, TX  | 100.94 | 113.67 | 106.27 | 130.51 | 116.24 |
|       | Grayson County, TX    | 93.05  | 103.96 | 92.14  | 102.59 | 97.39  |

| 48183 | Gregg County, TX        | 96.1   | 114.14 | 103.02 | 99.15  | 103.92 |
|-------|-------------------------|--------|--------|--------|--------|--------|
| 48187 | Guadalupe County, TX    | 96.53  | 93.38  | 84.13  | 94.73  | 90.14  |
| 48199 | Hardin County, TX       | 89.38  | 75.62  | 84.66  | 83.17  | 78.78  |
| 48201 | Harris County, TX       | 112.9  | 122.96 | 115.12 | 138.63 | 128.31 |
| 48209 | Hays County, TX         | 95.58  | 87.83  | 131.77 | 84.13  | 99.78  |
| 48215 | Hidalgo County, TX      | 100.21 | 101.69 | 104.76 | 109.1  | 104.98 |
| 48231 | Hunt County, TX         | 91.85  | 76.8   | 100.17 | 94.77  | 88.5   |
| 48245 | Jefferson County, TX    | 99.99  | 118.66 | 127.39 | 137.42 | 126.37 |
| 48251 | Johnson County, TX      | 94.62  | 85     | 88.74  | 91.72  | 87.39  |
| 48257 | Kaufman County, TX      | 91.56  | 77.63  | 83.06  | 108.05 | 87.46  |
| 48259 | Kendall County, TX      | 94.46  | 97.53  | 79.63  | 72.72  | 82.42  |
| 48281 | Lampasas County, TX     | 89.18  | 74.92  | 86.25  | 95.76  | 82.98  |
| 48291 | Liberty County, TX      | 89.41  | 54.79  | 90.7   | 83.18  | 74.12  |
| 48303 | Lubbock County, TX      | 101.82 | 123.12 | 97.75  | 110.77 | 110.57 |
| 48309 | McLennan County, TX     | 96.64  | 112.13 | 100.28 | 109.99 | 106.02 |
| 48325 | Medina County, TX       | 88.53  | 55.51  | 85.3   | 81.66  | 71.88  |
| 48329 | Midland County, TX      | 103.45 | 123.85 | 110.9  | 119.62 | 118.27 |
| 48339 | Montgomery County, TX   | 95.68  | 87.52  | 111.61 | 84.05  | 93.32  |
| 48355 | Nueces County, TX       | 104.85 | 127.12 | 106.59 | 121.3  | 118.91 |
| 48361 | Orange County, TX       | 90.28  | 87.97  | 84.52  | 104.13 | 89.54  |
| 48367 | Parker County, TX       | 90.72  | 77.89  | 87.88  | 79     | 79.62  |
| 48375 | Potter County, TX       | 101.4  | 118.2  | 99.33  | 132.71 | 116.32 |
| 48381 | Randall County, TX      | 101.51 | 122.09 | 78.97  | 110.72 | 104.2  |
| 48397 | Rockwall County, TX     | 97.13  | 97.42  | 79.27  | 94.18  | 89.89  |
| 48401 | Rusk County, TX         | 89.28  | 80.54  | 82.05  | 67.69  | 74.59  |
| 48409 | San Patricio County, TX | 93.48  | 114.78 | 84.07  | 111.29 | 101.14 |
| 48423 | Smith County, TX        | 95.5   | 100.31 | 119.02 | 100.6  | 104.88 |
| 48439 | Tarrant County, TX      | 108.94 | 119.35 | 100.17 | 128.9  | 118.12 |
| 48451 | Tom Green County, TX    | 97.73  | 119.81 | 103.96 | 106.9  | 108.97 |
| 48453 | Travis County, TX       | 108.45 | 120.81 | 148.98 | 110.66 | 128.09 |
| 48459 | Upshur County, TX       | 90.15  | 67.18  | 79.57  | 86.71  | 75.86  |
| 48469 | Victoria County, TX     | 103.1  | 120.55 | 119.38 | 119.7  | 119.82 |
| 48473 | Waller County, TX       | 95.59  | 60.29  | 82.16  | 92.14  | 77.94  |
| 48479 | Webb County, TX         | 101.78 | 122.77 | 102.69 | 121.89 | 115.53 |
| 48485 | Wichita County, TX      | 98.04  | 121.94 | 121.17 | 110.29 | 116.25 |
| 48491 | Williamson County, TX   | 101.28 | 106.24 | 98.74  | 101.69 | 102.51 |
| 48493 | Wilson County, TX       | 89.22  | 46.7   | 88.44  | 72.24  | 67.33  |
| 48497 | Wise County, TX         | 89.07  | 68.46  | 80.23  | 80.04  | 74.03  |
| 49005 | Cache County, UT        | 100.03 | 120.88 | 128.98 | 82.21  | 110.14 |

| 49011 | Davis County, UT         | 103.45 | 125.21 | 80.47  | 105.19 | 104.52 |
|-------|--------------------------|--------|--------|--------|--------|--------|
| 49023 | Juab County, UT          | 88.62  | 93.3   | 78.14  | 83.59  | 82.2   |
| 49035 | Salt Lake County, UT     | 112.04 | 129.1  | 106.26 | 116.3  | 120.12 |
| 49043 | Summit County, UT        | 90.7   | 90.55  | 91.28  | 75.6   | 83.61  |
| 49045 | Tooele County, UT        | 97.75  | 102.75 | 79.12  | 75.88  | 85.94  |
| 49049 | Utah County, UT          | 108.21 | 127.19 | 89.82  | 106.36 | 109.98 |
| 49053 | Washington County, UT    | 95.06  | 98.96  | 84.85  | 91.6   | 90.67  |
| 49057 | Weber County, UT         | 105.74 | 124.44 | 97.16  | 108.01 | 111.17 |
| 50007 | Chittenden County, VT    | 101.56 | 121.65 | 152.59 | 89.97  | 120.78 |
| 50011 | Franklin County, VT      | 92.87  | 95.99  | 82.45  | 75.67  | 83.25  |
| 50013 | Grand Isle County, VT    | 89.13  | 86.07  | 69.37  | 90.87  | 79.6   |
| 51003 | Albemarle County, VA     | 95.3   | 102.67 | 87.34  | 78.58  | 88.59  |
| 51009 | Amherst County, VA       | 89.69  | 70.62  | 84.6   | 75.08  | 74.72  |
| 51011 | Appomattox County, VA    | 89.68  | 39.87  | 90.05  | 58.37  | 61.45  |
| 51013 | Arlington County, VA     | 174.41 | 153.2  | 95.54  | 177.13 | 163.28 |
| 51019 | Bedford County, VA       | 89.97  | 55.41  | 91.02  | 73.51  | 71.54  |
| 51023 | Botetourt County, VA     | 89.85  | 72     | 83.63  | 88.06  | 79     |
| 51031 | Campbell County, VA      | 91.88  | 77.31  | 83.38  | 109.02 | 87.87  |
| 51033 | Caroline County, VA      | 89.04  | 40.8   | 74.87  | 77.09  | 62.65  |
| 51041 | Chesterfield County, VA  | 100.63 | 98.15  | 114.36 | 102.77 | 105.03 |
| 51043 | Clarke County, VA        | 89.87  | 79.72  | 79.01  | 86.65  | 79.55  |
| 51053 | Dinwiddie County, VA     | 90.02  | 49.1   | 78.23  | 71.08  | 64.75  |
| 51059 | Fairfax County, VA       | 117.83 | 123.7  | 113.17 | 114.82 | 121.96 |
| 51061 | Fauquier County, VA      | 90.61  | 73.98  | 90.24  | 80.5   | 79.57  |
| 51065 | Fluvanna County, VA      | 92.01  | 71.24  | 75.82  | 69.22  | 71.02  |
| 51067 | Franklin County, VA      | 91.3   | 47.21  | 88.85  | 77.48  | 69.94  |
| 51069 | Frederick County, VA     | 93.79  | 81.33  | 87.14  | 85.85  | 83.61  |
| 51073 | Gloucester County, VA    | 92.66  | 69.24  | 89.69  | 99.14  | 84.43  |
| 51075 | Goochland County, VA     | 90.23  | 55.11  | 75.26  | 78.66  | 68.17  |
| 51079 | Greene County, VA        | 90.55  | 59.72  | 70.1   | 78.44  | 68.03  |
| 51085 | Hanover County, VA       | 94.37  | 84.41  | 82.56  | 88.35  | 84.1   |
| 51087 | Henrico County, VA       | 105.97 | 114.27 | 86.41  | 123.03 | 109.38 |
| 51093 | Isle of Wight County, VA | 90.76  | 75.64  | 77.65  | 79.82  | 75.95  |
| 51095 | James City County, VA    | 93.7   | 97.02  | 79.6   | 106.28 | 92.61  |
| 51101 | King William County, VA  | 90.95  | 56.69  | 79.27  | 102.1  | 77.57  |
| 51107 | Loudoun County, VA       | 102.68 | 116.85 | 81.49  | 113.55 | 104.6  |
| 51115 | Mathews County, VA       | 92.2   | 52.08  | 72.32  | 78.22  | 66.77  |
| 51121 | Montgomery County, VA    | 95.29  | 95.57  | 85.4   | 102.18 | 93.19  |
| 51127 | New Kent County, VA      | 89.75  | 43.95  | 80.36  | 72.4   | 64.13  |

| 51143 | Pittsylvania County, VA   | 89.61  | 42.72  | 80.8   | 66.85  | 62.08  |
|-------|---------------------------|--------|--------|--------|--------|--------|
| 51145 | Powhatan County, VA       | 94.07  | 44.51  | 74.52  | 65.38  | 61.61  |
| 51149 | Prince George County, VA  | 90.96  | 66.68  | 75.53  | 81.97  | 73.19  |
| 51153 | Prince William County, VA | 106.28 | 106.57 | 94.52  | 115.14 | 107.11 |
| 51155 | Pulaski County, VA        | 91.55  | 84.58  | 83.02  | 103.9  | 88.33  |
| 51161 | Roanoke County, VA        | 96.03  | 110.04 | 80.69  | 98.89  | 95.46  |
| 51165 | Rockingham County, VA     | 90.09  | 73.51  | 86.01  | 88.97  | 80.6   |
| 51169 | Scott County, VA          | 89.25  | 50.38  | 78.01  | 92.28  | 71.54  |
| 51177 | Spotsylvania County, VA   | 97.94  | 84.86  | 88.47  | 92.55  | 88.57  |
| 51179 | Stafford County, VA       | 98.78  | 84.11  | 81.07  | 88.85  | 85.09  |
| 51183 | Sussex County, VA         | 102.08 | 63.8   |        |        |        |
| 51187 | Warren County, VA         | 93.5   | 92.21  | 88.78  | 94.07  | 90.07  |
| 51191 | Washington County, VA     | 90.49  | 77.47  | 81.92  | 90.19  | 81.06  |
| 51199 | York County, VA           | 97.29  | 99     | 86.14  | 108.5  | 97.13  |
| 51510 | Alexandria city, VA       | 176.94 | 154.32 | 115.16 | 173.76 | 169.56 |
| 51515 | Bedford city, VA          | 94.78  | 123.63 | 72.04  | 113.62 | 101.29 |
| 51520 | Bristol city, VA          | 105    | 130.6  | 82.35  | 145.26 | 119.97 |
| 51540 | Charlottesville city, VA  | 128.8  | 148.33 | 210.83 | 152.37 | 175.93 |
| 51550 | Chesapeake city, VA       | 103.4  | 108.24 | 88.28  | 109.52 | 102.98 |
| 51570 | Colonial Heights city, VA | 108.95 | 135.66 | 77.65  | 153.6  | 123.97 |
| 51590 | Danville city, VA         | 99.84  | 126.2  | 121.82 | 120.33 | 121.54 |
| 51600 | Fairfax city, VA          | 116.97 | 152.84 | 73     | 131.05 | 123.34 |
| 51610 | Falls Church city, VA     | 127.12 | 177.53 | 72.72  | 164.07 | 144.69 |
| 51630 | Fredericksburg city, VA   | 120.16 | 145.13 | 97.72  | 154.28 | 137.06 |
| 51650 | Hampton city, VA          | 110.55 | 123.19 | 114.92 | 150.96 | 131.48 |
| 51660 | Harrisonburg city, VA     | 122.83 | 143.99 | 144.42 | 131.8  | 145.19 |
| 51670 | Hopewell city, VA         | 112.29 | 124.58 | 79.39  | 185.81 | 132.25 |
| 51680 | Lynchburg city, VA        | 104.8  | 130.42 | 104.85 | 132.31 | 122.87 |
| 51683 | Manassas city, VA         | 115.54 | 140.36 | 76.57  | 150.36 | 126.17 |
| 51685 | Manassas Park city, VA    | 129.66 | 128.88 | 82.19  | 133.5  | 123.45 |
| 51700 | Newport News city, VA     | 112.21 | 121.94 | 86.53  | 137.18 | 118.28 |
| 51710 | Norfolk city, VA          | 129.98 | 131.46 | 210.96 | 179.44 | 179.57 |
| 51730 | Petersburg city, VA       | 101.48 | 127    | 104.35 | 144.23 | 124.34 |
| 51735 | Poquoson city, VA         | 97.09  | 105.92 | 77.55  | 104.32 | 95.22  |
| 51740 | Portsmouth city, VA       | 111.16 | 129.35 | 88.86  | 163.76 | 129.42 |
| 51750 | Radford city, VA          | 105.79 | 135.4  | 81.24  | 156.21 | 124.84 |
| 51760 | Richmond city, VA         | 120.46 | 133.06 | 160.69 | 172.23 | 158.9  |
| 51770 | Roanoke city, VA          | 109.84 | 129.71 | 120.97 | 155.62 | 136.69 |
| 51775 | Salem city, VA            | 107.3  | 128.88 | 76.93  | 140.41 | 116.91 |

| 51800 | Suffolk city, VA        | 95.77  | 99.14  | 103.14 | 98.02  | 98.76  |
|-------|-------------------------|--------|--------|--------|--------|--------|
| 51810 | Virginia Beach city, VA | 111.75 | 123.1  | 86.61  | 137.93 | 118.77 |
| 51830 | Williamsburg city, VA   | 108.92 | 118.37 | 158.9  | 136.03 | 138.61 |
| 51840 | Winchester city, VA     | 114.03 | 135.13 | 133.91 | 150.19 | 142.1  |
| 53003 | Asotin County, WA       | 106.62 | 134.33 | 77     | 134.97 | 116.72 |
| 53005 | Benton County, WA       | 98.56  | 118.73 | 109.61 | 97.28  | 107.64 |
| 53007 | Chelan County, WA       | 97.97  | 126.31 | 120.3  | 99.04  | 113.78 |
| 53011 | Clark County, WA        | 102.63 | 123.4  | 89.55  | 105.28 | 106.59 |
| 53015 | Cowlitz County, WA      | 96.07  | 103.4  | 128.01 | 99     | 108.37 |
| 53017 | Douglas County, WA      | 103.94 | 116.98 | 82.17  | 91.3   | 98.23  |
| 53021 | Franklin County, WA     | 101.59 | 119.22 | 82.23  | 111.14 | 104.48 |
| 53033 | King County, WA         | 114.85 | 128.93 | 159.34 | 131.7  | 142.6  |
| 53035 | Kitsap County, WA       | 98.92  | 107.82 | 115.62 | 96.04  | 105.81 |
| 53053 | Pierce County, WA       | 103.02 | 117.02 | 126.32 | 119.43 | 120.78 |
| 53057 | Skagit County, WA       | 96.68  | 112.71 | 101.76 | 99.87  | 103.48 |
| 53061 | Snohomish County, WA    | 103.47 | 116.86 | 122.73 | 100.03 | 113.62 |
| 53063 | Spokane County, WA      | 101.37 | 122.39 | 122.32 | 127.12 | 123.13 |
| 53067 | Thurston County, WA     | 97.83  | 103.71 | 132.9  | 95.16  | 109.35 |
| 53073 | Whatcom County, WA      | 95.83  | 110.62 | 115.26 | 99     | 106.54 |
| 53077 | Yakima County, WA       | 98.64  | 124.46 | 128.18 | 89.38  | 112.84 |
| 54003 | Berkeley County, WV     | 94.85  | 90.23  | 97.7   | 94.03  | 92.67  |
| 54005 | Boone County, WV        | 90.83  | 61.03  |        | 123.52 |        |
| 54009 | Brooke County, WV       | 91.02  | 93.32  | 87.28  | 116.81 | 96.34  |
| 54011 | Cabell County, WV       | 98.52  | 112.81 | 183.48 | 119.12 | 135.99 |
| 54029 | Hancock County, WV      | 94.13  | 110.72 | 86.79  | 118.07 | 103.07 |
| 54037 | Jefferson County, WV    | 91.79  | 75.67  | 87.64  | 98.81  | 85.44  |
| 54039 | Kanawha County, WV      | 96.1   | 108.14 | 147.64 | 125.6  | 124.48 |
| 54051 | Marshall County, WV     | 92.36  | 89.16  | 137.78 | 120.37 | 112.53 |
| 54057 | Mineral County, WV      | 90.81  | 75.55  | 159.67 | 111.67 | 111.91 |
| 54061 | Monongalia County, WV   | 98.42  | 117.16 | 120.1  | 115.01 | 116.02 |
| 54065 | Morgan County, WV       | 89.5   | 67.7   | 90     | 74.66  | 75.31  |
| 54069 | Ohio County, WV         | 95.76  | 115.77 | 150.91 | 129.79 | 129.14 |
| 54077 | Preston County, WV      | 88.93  | 44.98  | 90.63  | 80.67  | 70.06  |
| 54079 | Putnam County, WV       | 93.37  | 87.87  | 78.21  | 99.34  | 86.98  |
| 54099 | Wayne County, WV        | 93.73  | 81.82  | 84.99  | 106.16 | 89.48  |
| 54107 | Wood County, WV         | 96.66  | 116.84 | 107.75 | 121.08 | 113.37 |
| 55009 | Brown County, WI        | 99.46  | 115.4  | 101.3  | 91.01  | 102.26 |
| 55015 | Calumet County, WI      | 94.95  | 80.84  | 87.75  | 80.59  | 82.35  |
| 55017 | Chippewa County, WI     | 92.19  | 85.15  | 89.4   | 88.5   | 85.86  |

| 55021 | Columbia County, WI    | 90.01  | 92.46  | 87.63  | 90.9   | 87.68  |
|-------|------------------------|--------|--------|--------|--------|--------|
| 55025 | Dane County, WI        | 106.96 | 126.2  | 153.67 | 106.96 | 129.63 |
| 55031 | Douglas County, WI     | 95.01  | 99.68  | 81.91  | 108.53 | 95.3   |
| 55035 | Eau Claire County, WI  | 98.55  | 115.5  | 116.85 | 96.62  | 108.7  |
| 55039 | Fond du Lac County, WI | 95.54  | 109.78 | 153.06 | 94.09  | 116.57 |
| 55049 | Iowa County, WI        | 89.19  | 78     | 83.48  | 83.09  | 79.07  |
| 55059 | Kenosha County, WI     | 100.8  | 119.03 | 123.52 | 118.9  | 119.67 |
| 55061 | Kewaunee County, WI    | 92.15  | 103.67 | 77.23  | 79.49  | 85.01  |
| 55063 | La Crosse County, WI   | 98.49  | 119.38 | 88.95  | 117.4  | 107.65 |
| 55073 | Marathon County, WI    | 94.14  | 102.58 | 121.29 | 83.21  | 100.38 |
| 55079 | Milwaukee County, WI   | 128.75 | 139.35 | 178.96 | 155.69 | 164.06 |
| 55083 | Oconto County, WI      | 88.82  | 49.35  | 77.77  | 66.91  | 62.99  |
| 55087 | Outagamie County, WI   | 99.06  | 120.79 | 164.21 | 97.96  | 125.91 |
| 55089 | Ozaukee County, WI     | 95.11  | 116.53 | 106.77 | 87.76  | 101.95 |
| 55093 | Pierce County, WI      | 94.38  | 92.07  | 143.31 | 81.67  | 103.61 |
| 55101 | Racine County, WI      | 100.48 | 122.63 | 111.62 | 107.68 | 113.4  |
| 55105 | Rock County, WI        | 97.51  | 113.9  | 108.04 | 98.59  | 105.7  |
| 55109 | St. Croix County, WI   | 92.02  | 87.72  | 93.45  | 67.27  | 81.19  |
| 55117 | Sheboygan County, WI   | 97.6   | 115.59 | 94.01  | 98.77  | 101.88 |
| 55131 | Washington County, WI  | 94.74  | 96.05  | 128.67 | 75.35  | 98.36  |
| 55133 | Waukesha County, WI    | 96.89  | 112.13 | 147.79 | 101.06 | 118.28 |
| 55139 | Winnebago County, WI   | 100.65 | 118.29 | 97.48  | 113.49 | 109.45 |
| 56021 | Laramie County, WY     | 100.71 | 112.98 | 132.64 | 114.68 | 119.28 |

|           |       | -                                      | Lsad | density | mix    | centering | street | composite |
|-----------|-------|----------------------------------------|------|---------|--------|-----------|--------|-----------|
| MSAc Code | Geoid | Name                                   | 10   | factor  | factor | factor    | factor | index     |
| 10420     | 10420 | Akron, OH MSA                          | M1   | 94.55   | 113.13 | 90.69     | 106.81 | 103.15    |
|           |       | Albany-Schenectady-Troy, NY            |      |         |        |           |        |           |
| 10580     | 10580 |                                        | M1   | 95.40   | 105.96 | 108.19    | 86.04  | 95.12     |
| 10740     | 10740 |                                        | M1   | 103.60  | 102.57 | 99.36     | 97.51  | 98.07     |
|           |       | Allentown-Bethlehem-Easton,            |      |         |        |           |        |           |
| 10900     | 10900 |                                        | M1   | 98.76   | 128.59 | 101.10    | 135.97 | 124.40    |
| 11100     | 11100 |                                        | M1   | 96.16   | 109.27 | 76.98     | 91.56  | 107.49    |
| 11460     | 11460 | · · · · ·                              | M1   | 103.27  | 105.04 | 123.11    | 89.95  | 122.76    |
| 11540     | 11540 |                                        | M1   | 90.65   | 99.81  | 156.72    | 79.92  | 132.69    |
| 11700     | 11700 | Asheville, NC MSA                      | M1   | 80.71   | 64.12  | 97.61     | 88.53  | 76.52     |
| 12050     | 12000 | Atlanta-Sandy Springs-                 |      | 07.00   | 05 47  | 00.00     | 75.00  | 40.00     |
| 12060     | 12060 |                                        | M1   | 97.80   | 85.47  | 89.89     | 75.92  | 40.99     |
| 12100     | 12100 | Atlantic City-Hammonton, NJ<br>MSA     | M1   | 96.33   | 100.10 | 154.52    | 130.71 | 150.36    |
| 12100     | 12100 | Augusta-Richmond County, GA-           |      | 50.55   | 100.10 | 134.32    | 130.71 | 150.50    |
| 12260     | 12260 | SC MSA                                 | M1   | 85.25   | 60.69  | 88.47     | 73.85  | 59.18     |
|           |       | Austin-Round Rock-San                  |      |         |        |           |        |           |
| 12420     | 12420 | Marcos, TX MSA                         | M1   | 100.42  | 99.66  | 138.78    | 102.88 | 102.44    |
| 12540     | 12540 | Bakersfield-Delano, CA MSA             | M1   | 101.29  | 114.13 | 76.82     | 73.14  | 81.78     |
| 12580     | 12580 | Baltimore-Towson, MD MSA               | M1   | 115.97  | 123.21 | 123.12    | 136.35 | 115.62    |
| 12940     | 12940 | Baton Rouge, LA MSA                    | M1   | 91.27   | 72.03  | 69.74     | 80.40  | 55.60     |
| 13140     | 13140 | Beaumont-Port Arthur, TX MSA           | M1   | 85.37   | 88.45  | 112.62    | 113.76 | 111.54    |
| 13380     | 13380 | Bellingham, WA MSA                     | M1   | 85.29   | 92.75  | 113.43    | 96.89  | 118.01    |
| 13780     | 13780 | Binghamton, NY MSA                     | M1   | 89.70   | 88.92  | 102.07    | 69.84  | 95.97     |
| 13820     | 13820 | Birmingham-Hoover, AL MSA              | M1   | 86.67   | 67.88  | 99.52     | 105.21 | 73.55     |
| 14260     | 14260 | Boise City-Nampa, ID MSA               | M1   | 95.80   | 110.45 | 75.15     | 91.88  | 91.06     |
| 14500     | 14500 | Boulder, CO MSA                        | M1   | 106.89  | 115.32 | 100.09    | 118.95 | 133.68    |
| 14740     | 14740 | Bremerton-Silverdale, WA MSA           | M1   | 90.48   | 87.55  | 112.87    | 86.20  | 108.86    |
|           |       | Bridgeport-Stamford-Norwalk,           |      |         |        |           |        |           |
| 14860     | 14860 | CT MSA                                 | M1   | 110.63  | 132.86 | 118.02    | 100.81 | 121.64    |
| 15180     | 15180 | Brownsville-Harlingen, TX MSA          | M1   | 90.92   | 77.74  | 51.43     | 105.96 | 74.69     |
| 15380     | 15380 | Buffalo-Niagara Falls, NY MSA          | M1   | 107.94  | 127.67 | 102.46    | 95.10  | 106.36    |
| 15540     | 15540 | Burlington-South Burlington,<br>VT MSA | M1   | 88.32   | 102.21 | 168.79    | 70.68  | 135.06    |
| 15940     | 15940 | Canton-Massillon, OH MSA               | M1   | 90.54   | 106.64 | 76.45     | 117.92 | 106.99    |
| 15980     | 15980 | Cape Coral-Fort Myers, FL MSA          | M1   | 91.87   | 81.41  | 91.52     | 126.34 | 99.22     |
| 16300     | 16300 | Cedar Rapids, IA MSA                   | M1   | 92.94   | 105.64 | 104.67    | 81.25  | 111.81    |
| 16580     | 16580 | Champaign-Urbana, IL MSA               | M1   | 100.00  | 123.27 | 153.64    | 82.81  | 145.16    |

## Appendix C. 2010 Metropolitan Indices

| 16620 | 16620 | Charleston, WV MSA              | M1 | 83.81  | 67.01  | 136.80 | 112.05 | 115.68 |
|-------|-------|---------------------------------|----|--------|--------|--------|--------|--------|
|       |       | Charleston-North Charleston-    |    |        |        |        |        |        |
| 16700 | 16700 |                                 | M1 | 95.29  | 89.19  | 108.94 | 99.03  | 98.53  |
|       |       | Charlotte-Gastonia-Rock Hill,   |    |        |        |        |        |        |
| 16740 | 16740 | NC-SC MSA                       | M1 | 94.55  | 84.71  | 103.05 | 86.93  | 70.45  |
| 16820 | 16820 | Charlottesville, VA MSA         | M1 | 91.16  | 86.08  | 141.81 | 71.77  | 119.08 |
| 16860 | 16860 | Chattanooga, TN-GA MSA          | M1 | 86.14  | 61.15  | 94.27  | 72.90  | 63.63  |
| 17020 | 17020 | Chico, CA MSA                   | M1 | 91.18  | 114.46 | 88.79  | 79.93  | 109.94 |
|       |       | Cincinnati-Middletown, OH-KY-   |    |        |        |        |        |        |
| 17140 | 17140 | IN MSA                          | M1 | 98.75  | 107.80 | 98.95  | 93.67  | 80.75  |
| 17300 | 17300 | Clarksville, TN-KY MSA          | M1 | 84.48  | 39.67  | 74.47  | 60.83  | 41.49  |
|       |       | Cleveland-Elyria-Mentor, OH     |    |        |        |        |        |        |
| 17460 | 17460 | MSA                             | M1 | 105.11 | 123.72 | 95.54  | 84.96  | 85.62  |
| 17780 | 17780 | College Station-Bryan, TX MSA   | M1 | 102.49 | 94.65  | 91.03  | 91.47  | 111.72 |
| 17820 | 17820 | Colorado Springs, CO MSA        | M1 | 102.94 | 108.37 | 75.94  | 121.76 | 106.33 |
| 17900 | 17900 | Columbia, SC MSA                | M1 | 89.63  | 69.14  | 108.38 | 66.63  | 67.45  |
| 17980 | 17980 | Columbus, GA-AL MSA             | M1 | 94.45  | 84.78  | 125.19 | 77.79  | 108.38 |
| 18140 | 18140 | Columbus, OH MSA                | M1 | 101.58 | 112.24 | 95.56  | 112.19 | 93.00  |
| 18580 | 18580 | Corpus Christi, TX MSA          | M1 | 98.68  | 118.31 | 90.15  | 110.41 | 117.29 |
|       |       | Davenport-Moline-Rock Island,   |    |        |        |        |        |        |
| 19340 | 19340 | IA-IL MSA                       | M1 | 91.78  | 121.21 | 70.03  | 102.95 | 105.59 |
| 19380 | 19380 | Dayton, OH MSA                  | M1 | 93.65  | 114.40 | 95.13  | 105.55 | 101.48 |
|       |       | Deltona-Daytona Beach-          |    |        |        |        |        |        |
| 19660 | 19660 | Ormond Beach, FL MSA            | M1 | 91.35  | 88.02  | 66.48  | 116.35 | 89.68  |
|       |       | Denver-Aurora-Broomfield, CO    |    |        |        |        |        |        |
| 19740 | 19740 |                                 | M1 | 118.31 | 119.44 | 109.11 | 125.16 | 107.10 |
| 10700 | 10700 | Des Moines-West Des Moines,     |    | 07.00  | 120.02 | 00.46  | 02.02  | 101.00 |
| 19780 | 19780 |                                 | M1 | 97.68  | 120.63 | 99.46  | 82.83  | 104.90 |
| 20260 | 20260 |                                 | M1 | 85.24  | 89.56  | 117.03 | 77.22  | 103.14 |
| 20500 |       | Durham-Chapel Hill, NC MSA      | M1 | 91.59  | 74.84  | 80.27  | 84.98  | 73.84  |
| 21340 |       | El Paso, TX MSA                 | M1 | 114.90 | 99.42  | 73.41  | 128.66 | 105.64 |
| 21500 | 21500 |                                 | M1 | 97.73  | 130.61 | 113.69 | 88.92  | 130.39 |
| 21660 | 21660 | Eugene-Springfield, OR MSA      | M1 | 95.35  | 125.70 | 116.84 | 91.29  | 125.63 |
| 21780 | 21780 | Evansville, IN-KY MSA           | M1 | 91.57  | 92.59  | 86.07  | 84.34  | 91.67  |
| 22020 | 22020 | Fargo, ND-MN MSA                | M1 | 99.18  | 118.65 | 106.96 | 73.56  | 121.82 |
| 22180 | 22180 | Fayetteville, NC MSA            | M1 | 91.13  | 71.69  | 72.57  | 71.77  | 66.02  |
|       |       | Fayetteville-Springdale-Rogers, |    |        |        |        |        |        |
| 22220 | 22220 | AR-MO MSA                       | M1 | 84.55  | 67.95  | 80.67  | 81.81  | 66.26  |
| 22420 | 22420 | Flint, MI MSA                   | M1 | 89.57  | 90.58  | 114.82 | 97.49  | 106.48 |
| 22500 | 22500 | Florence, SC MSA                | M1 | 81.22  | 51.13  | 87.85  | 61.44  | 61.06  |
| 22660 | 22660 | Fort Collins-Loveland, CO MSA   | M1 | 94.53  | 106.30 | 96.44  | 100.59 | 115.15 |

| 22900 | 22900 | Fort Smith, AR-OK MSA                                  | M1    | 80.74  | 56.78  | 75.30  | 86.02  | 64.84  |
|-------|-------|--------------------------------------------------------|-------|--------|--------|--------|--------|--------|
| 23060 | 23060 | Fort Wayne, IN MSA                                     | M1    | 92.42  | 93.70  | 89.90  | 73.85  | 86.67  |
| 23420 | 23420 | Fresno, CA MSA                                         | M1    | 101.75 | 126.18 | 81.45  | 82.42  | 92.24  |
| 23540 | 23540 | Gainesville, FL MSA                                    | M1    | 94.58  | 87.63  | 102.79 | 99.45  | 111.36 |
|       |       | Grand Rapids-Wyoming, MI                               |       |        |        |        |        |        |
| 24340 | 24340 | MSA                                                    | M1    | 91.39  | 91.78  | 99.15  | 74.75  | 79.18  |
| 24540 | 24540 | Greeley, CO MSA                                        | M1    | 87.33  | 99.05  | 94.05  | 85.82  | 103.61 |
| 24580 | 24580 | Green Bay, WI MSA                                      | M1    | 89.90  | 90.49  | 66.77  | 53.34  | 65.35  |
|       |       | Greensboro-High Point, NC                              |       |        |        |        |        |        |
| 24660 | 24660 | MSA                                                    | M1    | 88.22  | 80.57  | 84.94  | 70.70  | 63.50  |
| 24960 | 24960 | Greenville-Mauldin-Easley, SC                          | N / 1 | 86.60  | 72.90  | 01 15  | 71 40  |        |
| 24860 | 24860 |                                                        | M1    | 86.69  | 72.89  | 81.15  | 71.40  | 58.98  |
| 25060 | 25060 | Gulfport-Biloxi, MS MSA<br>Hagerstown-Martinsburg, MD- | M1    | 86.03  | 69.80  | 80.53  | 97.52  | 87.61  |
| 25180 | 25180 |                                                        | M1    | 84.10  | 74.10  | 112.54 | 78.51  | 94.13  |
| 25420 | 25420 |                                                        | M1    | 93.54  | 102.14 | 99.29  | 119.17 | 111.40 |
| 23420 | 23420 | Hartford-West Hartford-East                            |       | 55.54  | 102.14 | 55.25  | 115.17 | 111.40 |
| 25540 | 25540 | Hartford, CT MSA                                       | M1    | 100.12 | 113.10 | 119.54 | 72.59  | 93.50  |
|       |       | Hickory-Lenoir-Morganton, NC                           |       |        |        |        |        |        |
| 25860 | 25860 | MSA                                                    | M1    | 78.64  | 40.46  | 67.00  | 56.95  | 24.86  |
| 26100 | 26100 | Holland-Grand Haven, MI MSA                            | M1    | 86.45  | 81.52  | 78.64  | 71.71  | 78.17  |
|       |       | Houma-Bayou Cane-Thibodaux,                            |       |        |        |        |        |        |
| 26380 | 26380 |                                                        | M1    | 83.73  | 75.47  | 106.77 | 86.11  | 100.13 |
|       |       | Houston-Sugar Land-Baytown,                            |       |        |        |        |        |        |
| 26420 | 26420 | TX MSA                                                 | M1    | 108.30 | 102.66 | 92.56  | 129.43 | 76.74  |
| 26580 | 26580 | Huntington-Ashland, WV-KY-<br>OH MSA                   | M1    | 84.25  | 67.73  | 142.77 | 108.91 | 118.43 |
| 26620 | 26620 |                                                        | M1    | 86.18  | 58.29  | 89.43  | 99.31  | 78.02  |
| 26900 | 26900 | · · · ·                                                | M1    | 98.11  | 99.65  | 98.42  | 102.31 | 83.89  |
| 20300 | 20300 | Jackson, MS MSA                                        | M1    | 87.35  | 64.41  | 105.46 | 73.80  | 72.30  |
| 27140 |       | Jacksonville, FL MSA                                   | M1    | 96.81  | 82.50  | 90.17  | 111.76 | 80.85  |
| 27200 | 28020 |                                                        | M1    | 85.55  | 75.00  | 85.58  | 64.97  | 70.32  |
| 28020 | 28020 | Kansas City, MO-KS MSA                                 | M1    | 96.84  | 109.49 | 80.45  | 103.52 | 70.52  |
| 28140 | 20140 | Kennewick-Pasco-Richland, WA                           | IVIT  | 90.64  | 109.49 | 60.43  | 105.52 | 77.00  |
| 28420 | 28420 | -                                                      | M1    | 92.84  | 108.63 | 81.96  | 85.86  | 105.03 |
|       |       | Killeen-Temple-Fort Hood, TX                           |       |        |        |        |        |        |
| 28660 | 28660 | MSA                                                    | M1    | 89.16  | 79.86  | 78.17  | 94.80  | 83.12  |
|       |       | Kingsport-Bristol-Bristol, TN-VA                       |       |        |        |        |        |        |
| 28700 | 28700 | MSA                                                    | M1    | 78.73  | 40.53  | 89.67  | 82.87  | 60.00  |
| 28940 | 28940 | Knoxville, TN MSA                                      | M1    | 88.10  | 60.62  | 100.77 | 82.53  | 68.22  |
| 29140 | 29140 | Lafayette, IN MSA                                      | M1    | 95.46  | 90.63  | 94.82  | 83.10  | 106.55 |
| 29180 | 29180 | Lafayette, LA MSA                                      | M1    | 90.03  | 87.35  | 115.90 | 92.72  | 111.44 |

|       |       | Lake Havasu City-Kingman, AZ                    |      |        |        |        |        |        |
|-------|-------|-------------------------------------------------|------|--------|--------|--------|--------|--------|
| 29420 | 29420 | MSA                                             | M1   | 85.24  | 55.15  | 73.04  | 65.97  | 60.13  |
|       |       | Lakeland-Winter Haven, FL                       |      |        |        |        |        |        |
| 29460 | 29460 | MSA                                             | M1   | 87.51  | 54.24  | 95.32  | 128.15 | 87.64  |
| 29540 | 29540 | Lancaster, PA MSA                               | M1   | 95.61  | 110.05 | 124.31 | 84.74  | 112.64 |
| 29620 | 29620 | Lansing-East Lansing, MI MSA                    | M1   | 101.03 | 92.21  | 141.56 | 72.80  | 111.61 |
| 29700 | 29700 | Laredo, TX MSA                                  | M1   | 104.20 | 117.12 | 99.89  | 106.87 | 131.25 |
| 29740 | 29740 | Las Cruces, NM MSA                              | M1   | 89.33  | 84.27  | 108.16 | 89.06  | 109.17 |
| 29820 | 29820 | Las Vegas-Paradise, NV MSA                      | M1   | 142.12 | 105.02 | 136.42 | 114.29 | 121.20 |
| 30460 | 30460 | Lexington-Fayette, KY MSA                       | M1   | 99.56  | 110.42 | 115.34 | 95.11  | 116.76 |
| 30700 | 30700 | Lincoln, NE MSA                                 | M1   | 111.55 | 132.99 | 96.74  | 96.78  | 131.95 |
|       |       | Little Rock-North Little Rock-                  |      |        |        |        |        |        |
| 30780 | 30780 | Conway, AR MSA                                  | M1   | 88.00  | 75.36  | 93.55  | 90.35  | 76.08  |
| 30980 | 30980 | Longview, TX MSA                                | M1   | 81.66  | 71.62  | 81.06  | 68.46  | 73.06  |
|       |       | Louisville/Jefferson County, KY-                |      |        |        |        |        |        |
| 31140 | 31140 |                                                 | M1   | 98.44  | 89.48  | 93.12  | 102.87 | 82.92  |
| 31180 | 31180 | Lubbock, TX MSA                                 | M1   | 97.23  | 116.70 | 87.56  | 90.44  | 113.41 |
| 31340 | 31340 | Lynchburg, VA MSA                               | M1   | 81.51  | 57.07  | 76.38  | 77.42  | 63.97  |
| 31420 | 31420 | Macon, GA MSA                                   | M1   | 84.72  | 71.90  | 86.32  | 74.47  | 79.92  |
| 31540 | 31540 | Madison, WI MSA                                 | M1   | 101.00 | 115.83 | 168.11 | 94.85  | 136.69 |
| 31700 | 31700 | Manchester-Nashua, NH MSA                       | M1   | 95.10  | 104.38 | 114.15 | 89.28  | 112.19 |
|       |       | McAllen-Edinburg-Mission, TX                    |      |        |        |        |        |        |
| 32580 | 32580 |                                                 | M1   | 94.43  | 76.78  | 90.99  | 104.60 | 83.89  |
| 32780 | 32780 | ,                                               | M1   | 89.67  | 115.31 | 128.06 | 80.42  | 128.86 |
| 32820 | 32820 | Memphis, TN-MS-AR MSA                           | M1   | 96.60  | 77.76  | 94.23  | 90.62  | 70.77  |
| 32900 | 32900 | ,                                               | M1   | 93.90  | 114.76 | 96.48  | 66.25  | 105.86 |
|       |       | Milwaukee-Waukesha-West                         |      |        |        |        |        |        |
| 33340 | 33340 | Allis, WI MSA                                   | M1   | 113.31 | 126.73 | 153.40 | 130.35 | 134.18 |
| 22460 | 22460 | Minneapolis-St. Paul-<br>Bloomington, MN-WI MSA | M1   | 105.92 | 110.34 | 111.41 | 108.60 | 88.69  |
| 33460 |       |                                                 | M1   |        |        |        |        |        |
| 33660 | 33660 |                                                 |      | 92.43  | 88.23  | 78.79  | 112.30 | 97.48  |
| 33700 | 33700 |                                                 | M1   | 109.91 | 140.69 | 62.32  | 102.89 | 113.28 |
| 33860 | 33860 | Montgomery, AL MSA<br>Myrtle Beach-North Myrtle | M1   | 90.01  | 85.97  | 98.71  | 80.50  | 91.20  |
| 34820 | 34820 | Beach-Conway, SC MSA                            | M1   | 83.43  | 54.95  | 104.88 | 95.40  | 88.70  |
| 34820 | 34940 |                                                 | M1   | 91.57  | 81.95  | 55.19  | 90.69  | 75.23  |
| 54540 | 34340 | Nashville-Davidson                              | IVIT | 91.37  | 01.93  | 55.19  | 50.09  | 73.23  |
|       |       | MurfreesboroFranklin, TN                        |      |        |        |        |        |        |
| 34980 | 34980 |                                                 | M1   | 91.54  | 63.92  | 96.17  | 77.00  | 51.74  |
| 35300 | 35300 |                                                 | M1   | 106.86 | 127.52 | 113.51 | 97.82  | 116.29 |
| 35380 | 35380 |                                                 | M1   | 104.84 | 117.83 | 96.09  | 149.94 | 119.74 |

|        |       | LA MSA                                   |    |        |        |        |        |        |
|--------|-------|------------------------------------------|----|--------|--------|--------|--------|--------|
|        |       | North Port-Bradenton-                    |    |        |        |        |        |        |
| 35840  | 35840 | Sarasota, FL MSA                         | M1 | 97.45  | 101.45 | 84.95  | 126.69 | 105.49 |
| 35980  | 35980 | Norwich-New London, CT MSA               | M1 | 87.22  | 84.71  | 137.44 | 71.04  | 108.85 |
| 36100  | 36100 | Ocala, FL MSA                            | M1 | 80.80  | 41.30  | 105.49 | 91.78  | 74.67  |
| 36260  | 36260 | Ogden-Clearfield, UT MSA                 | M1 | 100.96 | 120.39 | 62.22  | 103.52 | 99.58  |
| 36420  | 36420 | Oklahoma City, OK MSA                    | M1 | 94.64  | 96.26  | 89.86  | 100.38 | 82.07  |
| 36500  | 36500 | Olympia, WA MSA                          | M1 | 89.23  | 80.87  | 121.00 | 98.73  | 114.63 |
|        |       | Omaha-Council Bluffs, NE-IA              |    |        |        |        |        |        |
| 36540  | 36540 | MSA                                      | M1 | 102.64 | 120.53 | 99.67  | 103.54 | 108.42 |
|        |       | Orlando-Kissimmee-Sanford, FL            |    |        |        |        |        |        |
| 36740  | 36740 |                                          | M1 | 102.40 | 85.79  | 89.29  | 129.14 | 83.97  |
| 274.00 | 07400 | Oxnard-Thousand Oaks-                    |    | 407.04 | 400.05 | 70.04  |        | 442.07 |
| 37100  | 37100 |                                          | M1 | 107.91 | 133.35 | 78.01  | 118.31 | 113.87 |
| 37340  | 37340 | Palm Bay-Melbourne-Titusville,<br>FL MSA | M1 | 96.94  | 79.64  | 60.02  | 105.42 | 77.91  |
| 57540  | 57540 | Pensacola-Ferry Pass-Brent, FL           |    | 90.94  | 79.04  | 00.02  | 103.42 | 77.91  |
| 37860  | 37860 | -                                        | M1 | 88.54  | 81.12  | 75.12  | 88.65  | 76.84  |
| 37900  | 37900 |                                          | M1 | 88.93  | 100.39 | 109.76 | 97.72  | 110.49 |
| 57500  | 37300 | Phoenix-Mesa-Glendale, AZ                |    | 00.55  | 100.55 | 105.70 | 57.72  | 110.45 |
| 38060  | 38060 |                                          | M1 | 111.60 | 102.36 | 96.37  | 111.33 | 78.32  |
| 38300  | 38300 | Pittsburgh, PA MSA                       | M1 | 96.16  | 115.14 | 107.78 | 119.33 | 95.45  |
|        |       | Portland-South Portland-                 |    |        |        |        |        |        |
| 38860  | 38860 | Biddeford, ME MSA                        | M1 | 86.06  | 79.09  | 157.47 | 80.24  | 107.72 |
|        |       | Portland-Vancouver-Hillsboro,            |    |        |        |        |        |        |
| 38900  | 38900 | OR-WA MSA                                | M1 | 111.14 | 136.12 | 100.81 | 124.98 | 109.85 |
| 38940  | 38940 | Port St. Lucie, FL MSA                   | M1 | 92.74  | 77.05  | 62.73  | 106.43 | 80.75  |
|        |       | Poughkeepsie-Newburgh-                   |    |        |        |        |        |        |
| 39100  | 39100 |                                          | M1 | 89.38  | 95.38  | 97.49  | 70.30  | 79.51  |
| 39140  | 39140 | -                                        | M1 | 82.33  | 53.19  | 58.15  | 69.96  | 48.96  |
|        |       | Providence-New Bedford-Fall              |    |        |        |        |        |        |
| 39300  | 39300 | · ·                                      | M1 | 105.40 | 83.28  | 112.77 | 141.95 | 104.34 |
| 39340  | 39340 | ,                                        | M1 | 104.53 | 123.55 | 77.37  | 100.08 | 108.45 |
| 39580  | 39580 | • •                                      | M1 | 96.99  | 87.30  | 109.43 | 88.16  | 84.25  |
| 39740  | 39740 |                                          | M1 | 102.22 | 121.83 | 129.72 | 113.76 | 137.90 |
| 39900  | 39900 | Reno-Sparks, NV MSA                      | M1 | 100.78 | 93.69  | 137.29 | 94.06  | 120.85 |
| 40060  | 40060 |                                          | M1 | 96.36  | 78.08  | 101.95 | 92.83  | 76.41  |
|        |       | Riverside-San Bernardino-                |    |        |        |        |        |        |
| 40140  | 40140 |                                          | M1 | 103.72 | 111.18 | 77.03  | 80.33  | 56.25  |
| 40220  | 40220 |                                          | M1 | 90.65  | 85.88  | 83.67  | 93.21  | 93.77  |
| 40380  | 40380 |                                          | M1 | 96.12  | 103.86 | 96.77  | 62.00  | 74.50  |
| 40420  | 40420 | Rockford, IL MSA                         | M1 | 94.78  | 110.04 | 91.83  | 107.05 | 114.98 |

|        |       | SacramentoArden-Arcade                 |       |        |         |        |        |        |
|--------|-------|----------------------------------------|-------|--------|---------|--------|--------|--------|
| 40900  | 40900 |                                        | M1    | 111.65 | 119.11  | 104.19 | 108.92 | 99.27  |
|        |       | Saginaw-Saginaw Township               |       |        |         |        |        |        |
| 40980  | 40980 | North, MI MSA                          | M1    | 86.77  | 93.77   | 110.97 | 93.62  | 116.62 |
| 41180  | 41180 | St. Louis, MO-IL MSA                   | M1    | 97.68  | 108.29  | 93.86  | 113.80 | 82.06  |
| 41420  | 41420 | Salem, OR MSA                          | M1    | 93.11  | 123.48  | 113.50 | 98.10  | 123.35 |
| 41500  | 41500 | Salinas, CA MSA                        | M1    | 101.65 | 116.00  | 102.94 | 90.70  | 115.19 |
| 41620  | 41620 | Salt Lake City, UT MSA                 | M1    | 117.77 | 125.49  | 93.32  | 97.63  | 106.96 |
|        |       | San Antonio-New Braunfels, TX          |       |        |         |        |        |        |
| 41700  | 41700 | MSA                                    | M1    | 100.67 | 93.56   | 95.15  | 102.43 | 77.37  |
|        |       | San Diego-Carlsbad-San                 |       |        |         |        |        |        |
| 41740  | 41740 | · ·                                    | M1    | 125.08 | 130.37  | 100.90 | 119.95 | 105.18 |
| 440.40 | 44040 | San Jose-Sunnyvale-Santa               | N 4 4 | 140 50 | 1 40 70 | 00.00  | 101 45 | 120 70 |
| 41940  | 41940 | Clara, CA MSA                          | M1    | 149.50 | 148.76  | 86.80  | 131.45 | 128.76 |
| 42020  | 42020 | San Luis Obispo-Paso Robles,<br>CA MSA | M1    | 89.90  | 119.80  | 103.87 | 88.53  | 118.90 |
| 42020  | 42020 | Santa Barbara-Santa Maria-             |       | 05.50  | 115.00  | 105.07 | 00.55  | 110.50 |
| 42060  | 42060 | Goleta, CA MSA                         | M1    | 112.28 | 148.85  | 109.48 | 122.05 | 146.59 |
|        |       | Santa Cruz-Watsonville, CA             |       |        |         |        |        |        |
| 42100  | 42100 | MSA                                    | M1    | 98.88  | 146.15  | 107.90 | 112.18 | 145.02 |
| 42220  | 42220 | Santa Rosa-Petaluma, CA MSA            | M1    | 93.70  | 132.31  | 91.91  | 96.82  | 113.92 |
| 42340  | 42340 | Savannah, GA MSA                       | M1    | 90.08  | 84.94   | 115.36 | 115.03 | 115.81 |
|        |       | ScrantonWilkes-Barre, PA               |       |        |         |        |        |        |
| 42540  | 42540 | MSA                                    | M1    | 91.28  | 116.46  | 95.07  | 123.01 | 115.84 |
|        |       | Shreveport-Bossier City, LA            |       |        |         |        |        |        |
| 43340  | 43340 |                                        | M1    | 87.79  | 76.94   | 72.39  | 84.53  | 72.63  |
| 43620  | 43620 |                                        | M1    | 97.68  | 104.85  | 95.96  | 60.16  | 101.75 |
| 42700  | 42700 | South Bend-Mishawaka, IN-MI            |       | 00.04  | 04.00   | 111.01 | 110.00 | 404 74 |
| 43780  | 43780 |                                        | M1    | 90.94  | 94.08   | 111.91 | 118.68 | 121.71 |
| 43900  |       | Spartanburg, SC MSA                    | M1    | 81.26  | 68.26   | 91.26  | 72.48  | 74.00  |
| 44060  |       | Spokane, WA MSA                        | M1    | 98.98  | 115.82  | 108.57 | 128.26 | 129.40 |
| 44100  |       | Springfield, IL MSA                    | M1    | 90.39  | 100.51  | 160.03 | 96.74  | 142.24 |
| 44180  |       | Springfield, MO MSA                    | M1    | 89.10  | 89.25   | 75.99  | 91.87  | 83.96  |
| 44700  | 44700 | Stockton, CA MSA                       | M1    | 106.54 | 135.75  | 82.11  | 121.04 | 120.28 |
| 45060  | 45060 |                                        | M1    | 94.75  | 100.93  | 122.57 | 69.91  | 96.65  |
| 45220  | 45220 | Tallahassee, FL MSA                    | M1    | 91.64  | 68.25   | 130.77 | 79.80  | 98.95  |
|        |       | Tampa-St. Petersburg-                  |       | 105.15 |         |        |        |        |
| 45300  | 45300 | · · · · ·                              | M1    | 105.18 | 105.35  | 93.00  | 150.09 | 98.49  |
| 45780  | 45780 |                                        | M1    | 95.30  | 120.34  | 85.46  | 95.85  | 100.90 |
| 45820  | 45820 | Topeka, KS MSA                         | M1    | 88.98  | 83.12   | 102.18 | 71.38  | 94.82  |
| 45940  | 45940 | <u>.</u>                               | M1    | 115.88 | 128.00  | 97.36  | 139.06 | 144.71 |
| 46060  | 46060 | Tucson, AZ MSA                         | M1    | 100.79 | 90.96   | 78.71  | 94.72  | 78.92  |

| 46140      | 46140 | Tulsa, OK MSA                                          | M1   | 90.54  | 92.40  | 93.54  | 103.35 | 86.65  |
|------------|-------|--------------------------------------------------------|------|--------|--------|--------|--------|--------|
| 46220      | 46220 | Tuscaloosa, AL MSA                                     | M1   | 85.85  | 68.60  | 154.72 | 92.03  | 122.18 |
| 46340      | 46340 | Tyler, TX MSA                                          | M1   | 85.76  | 72.48  | 122.62 | 93.19  | 110.66 |
| 46540      | 46540 | Utica-Rome, NY MSA                                     | M1   | 90.87  | 83.53  | 98.35  | 61.91  | 84.71  |
| 46700      | 46700 | Vallejo-Fairfield, CA MSA                              | M1   | 105.38 | 132.03 | 79.32  | 115.90 | 124.16 |
|            |       | Virginia Beach-Norfolk-                                |      |        |        |        |        |        |
| 47260      | 47260 | Newport News, VA-NC MSA                                | M1   | 106.41 | 105.24 | 102.38 | 131.60 | 104.45 |
| 47300      | 47300 | Visalia-Porterville, CA MSA                            | M1   | 91.94  | 106.37 | 79.64  | 83.98  | 91.55  |
| 47380      | 47380 | Waco, TX MSA                                           | M1   | 87.96  | 96.10  | 100.62 | 107.83 | 117.11 |
| 48620      | 48620 | Wichita, KS MSA                                        | M1   | 95.63  | 107.27 | 88.57  | 83.65  | 91.74  |
| 48900      | 48900 | Wilmington, NC MSA                                     | M1   | 85.89  | 73.12  | 83.92  | 84.13  | 77.27  |
| 49180      | 49180 | Winston-Salem, NC MSA                                  | M1   | 86.43  | 68.62  | 87.42  | 68.47  | 63.44  |
| 49420      | 49420 | Yakima, WA MSA                                         | M1   | 90.95  | 117.91 | 133.08 | 65.81  | 123.19 |
| 49620      | 49620 | York-Hanover, PA MSA                                   | M1   | 90.92  | 95.83  | 113.20 | 90.32  | 105.12 |
|            |       | Youngstown-Warren-                                     |      |        |        |        |        |        |
| 49660      | 49660 | Boardman, OH-PA MSA                                    | M1   | 87.36  | 100.76 | 74.10  | 81.52  | 78.08  |
| 1698016974 | 16980 | Chicago-Joliet-Naperville, IL MD                       | M3   | 145.50 | 140.09 | 143.24 | 160.21 | 125.90 |
| 1698023844 | 16980 | Gary, IN MD                                            | M3   | 94.53  | 107.73 | 82.31  | 106.33 | 96.70  |
|            |       | Lake County-Kenosha County,                            |      |        |        |        |        |        |
| 1698029404 | 16980 | IL-WI MD                                               | M3   | 101.65 | 112.39 | 67.78  | 132.08 | 103.10 |
| 1910019124 | 19100 | Dallas-Plano-Irving, TX MD                             | M3   | 111.46 | 105.90 | 94.21  | 129.74 | 86.15  |
| 1910023104 | 19100 | Fort Worth-Arlington, TX MD                            | M3   | 103.71 | 100.89 | 72.55  | 117.21 | 78.56  |
|            |       | Detroit-Livonia-Dearborn, MI                           |      |        |        |        |        |        |
| 1982019804 | 19820 | MD                                                     | M3   | 125.20 | 124.65 | 107.48 | 183.98 | 137.17 |
| 1982047644 | 19820 | Warren-Troy-Farmington Hills,<br>MI MD                 | M3   | 97.88  | 110.33 | 70.54  | 96.17  | 67.03  |
| 1582047044 | 19820 | Los Angeles-Long Beach-                                | 1013 | 57.88  | 110.55 | 70.34  | 50.17  | 07.05  |
| 3110031084 | 31100 | Glendale, CA MD                                        | M3   | 187.39 | 160.18 | 115.66 | 154.40 | 130.33 |
|            |       | Santa Ana-Anaheim-Irvine, CA                           |      |        |        |        |        |        |
| 3110042044 | 31100 | MD                                                     | M3   | 161.91 | 155.02 | 79.64  | 181.81 | 139.86 |
|            |       | Fort Lauderdale-Pompano                                |      |        |        |        |        |        |
| 3310022744 | 33100 | Beach-Deerfield Beach, FL MD                           | M3   | 140.93 | 136.53 | 61.79  | 153.66 | 121.41 |
|            |       | Miami-Miami Beach-Kendall, FL                          |      |        |        |        |        |        |
| 3310033124 | 33100 | MD                                                     | M3   | 160.18 | 136.41 | 117.91 | 166.90 | 144.12 |
| 3310048424 | 33100 | West Palm Beach-Boca Raton-<br>Boynton Beach, FL MD    | M3   | 110.73 | 121.02 | 69.66  | 118.46 | 98.18  |
| 3562020764 | 35620 | Edison-New Brunswick, NJ MD                            | M3   | 109.41 | 121.02 | 69.02  | 137.91 | 96.77  |
| 3562035004 | 35620 | Nassau-Suffolk, NY MD                                  | M3   | 123.33 | 123.03 | 81.01  | 155.85 |        |
|            |       |                                                        |      |        |        |        |        | 117.04 |
| 3562035084 | 35620 | Newark-Union, NJ-PA MD<br>New York-White Plains-Wayne, | M3   | 126.86 | 139.67 | 90.43  | 113.76 | 109.62 |
| 3562035644 | 35620 | NY-NJ MD                                               | M3   | 384.29 | 159.34 | 213.49 | 193.80 | 203.36 |

| 3798015804 | 37980 | Camden, NJ MD                 | M3 | 105.39 | 125.72 | 78.53  | 120.07 | 103.22 |
|------------|-------|-------------------------------|----|--------|--------|--------|--------|--------|
| 3798037964 | 37980 | Philadelphia, PA MD           | M3 | 141.01 | 142.25 | 115.95 | 140.06 | 122.42 |
| 3798048864 | 37980 | Wilmington, DE-MD-NJ MD       | M3 | 102.42 | 109.29 | 96.53  | 120.29 | 112.94 |
|            |       | Oakland-Fremont-Hayward, CA   |    |        |        |        |        |        |
| 4186036084 | 41860 | MD                            | M3 | 136.28 | 145.75 | 88.11  | 159.44 | 127.24 |
|            |       | San Francisco-San Mateo-      |    |        |        |        |        |        |
| 4186041884 | 41860 | Redwood City, CA MD           | M3 | 185.97 | 167.17 | 230.92 | 162.83 | 194.28 |
|            |       | Seattle-Bellevue-Everett, WA  |    |        |        |        |        |        |
| 4266042644 | 42660 | MD                            | M3 | 121.27 | 123.99 | 121.68 | 131.86 | 116.11 |
| 4266045104 | 42660 | Tacoma, WA MD                 | M3 | 103.62 | 105.56 | 92.25  | 119.05 | 107.48 |
|            |       | Bethesda-Rockville-Frederick, |    |        |        |        |        |        |
| 4790013644 | 47900 | MD MD                         | M3 | 115.08 | 123.84 | 98.97  | 118.94 | 114.66 |
|            |       | Washington-Arlington-         |    |        |        |        |        |        |
| 4790047894 | 47900 | Alexandria, DC-VA-MD-WV MD    | M3 | 122.35 | 117.61 | 133.16 | 125.91 | 107.21 |

| UA10  | UA00  | UZA name                                  | density  | mix      | centering | street   | composite |
|-------|-------|-------------------------------------------|----------|----------|-----------|----------|-----------|
| code  | code  |                                           | factor10 | factor10 | factor10  | factor10 | index10   |
| 199   | 199   | AberdeenBel Air SouthBel Air<br>North, MD | 85.49    | 120.77   | 76.74     | 77.96    | 96        |
| 766   | 766   | Akron, OH                                 | 81.39    | 116.43   | 93.24     | 89.2     | 90        |
| 970   | 928   | AlbanySchenectady, NY                     | 97.77    | 118.87   | 112.62    | 89.2     | 106.98    |
| 1171  | 1171  | Albuquerque, NM                           | 116.44   | 78.03    | 93.5      | 122.76   | 100.58    |
| 1495  | 1495  | Allentown, PANJ                           | 97.96    | 143.39   | 104.15    | 137.07   | 131.35    |
| 2602  | 2602  | Ann Arbor, MI                             | 97.99    | 79.81    | 147.32    | 63.7     | 102.94    |
| 2683  | 2683  | Antioch, CA                               | 114.41   | 159.21   | 55.47     | 116.28   | 126.73    |
| 2764  | 2764  | Appleton, WI                              | 95.15    | 115.28   | 129.16    | 109.29   | 131.07    |
| 3358  | 3358  | Asheville, NC                             | 60.41    | 95.23    | 103.73    | 77.43    | 83.12     |
| 3817  | 3817  | Atlanta, GA                               | 84.64    | 75.63    | 107.29    | 36.84    | 37.45     |
| 3898  | 3898  | Atlantic City, NJ                         | 93.87    | 91.07    | 157.06    | 143.86   | 144.25    |
| 4222  | 4222  | Augusta-Richmond County, GASC             | 72.48    | 77.69    | 94.35     | 84.62    | 76.28     |
| 4384  | 4384  | Austin, TX                                | 113.28   | 81.33    | 134.13    | 86.92    | 96.11     |
| 4681  | 4681  | Bakersfield, CA                           | 125.2    | 121.55   | 76.44     | 116.2    | 116.85    |
| 4843  | 4843  | Baltimore, MD                             | 129.32   | 121.02   | 123.1     | 122.24   | 122.49    |
| 5680  | 5680  | Baton Rouge, LA                           | 81.92    | 75.3     | 77.21     | 77.61    | 64.38     |
| 7786  | 7786  | Birmingham, AL                            | 73.46    | 86.42    | 105.98    | 112.13   | 88.06     |
| 8785  | 8785  | Boise City, ID                            | 108.78   | 117.41   | 75.99     | 117.27   | 113.63    |
| 8974  | 8974  | Bonita Springs, FL                        | 77.33    | 82.83    | 62        | 76.13    | 66.52     |
| 10972 | 10972 | Brownsville, TX                           | 104.71   | 69.61    | 60.4      | 113.57   | 90.72     |
| 11350 | 11350 | Buffalo, NY                               | 108.69   | 129.82   | 93.58     | 79.29    | 98.81     |
| 13375 | 13375 | Canton, OH                                | 78.14    | 120.31   | 79.59     | 119.98   | 107.69    |
| 13510 | 13510 | Cape Coral, FL                            | 71.37    | 48.77    | 102.22    | 108.16   | 73.12     |
| 15508 | 15508 | CharlestonNorth Charleston, SC            | 89.82    | 87.42    | 117.43    | 97.96    | 97.6      |
| 15670 | 15670 | Charlotte, NCSC                           | 82.95    | 64.56    | 115.94    | 53.01    | 57.41     |
| 15832 | 15832 | Chattanooga, TNGA                         | 68.92    | 54.18    | 97.03     | 70.33    | 60.96     |
| 16264 | 16264 | Chicago, ILIN                             | 138.66   | 115.95   | 146.41    | 132.57   | 121.64    |
| 16885 | 16885 | Cincinnati, OHKYIN                        | 96.17    | 108.85   | 108.51    | 70.43    | 81.34     |
| 17668 | 17668 | Cleveland, OH                             | 98.46    | 119.6    | 95.01     | 56.7     | 74.58     |
| 18964 | 18964 | Columbia, SC                              | 77.26    | 72.43    | 117.99    | 80.39    | 79.72     |
| 19099 | 19099 | Columbus, GAAL                            | 83.9     | 81.28    | 109.53    | 85.81    | 93.81     |
| 19234 | 19234 | Columbus, OH                              | 109.73   | 111.69   | 106.51    | 101.67   | 101.64    |
| 19504 | 19504 | Concord, CA                               | 117.87   | 127.75   | 88.56     | 108.39   | 116.23    |
| 19558 | 19558 | Concord, NC                               | 61.76    | 92.03    | 63.73     | 68.79    | 66.05     |
| 19755 | 87328 | ConroeThe Woodlands, TX                   | 84.06    | 74.6     | 90.9      | 55.55    | 72.27     |

## **Appendix D. Urbanized Areas Compactness Indices 2010**

| 20287 | 20287 | Corpus Christi, TX            | 106.9  | 117.65 | 86.49  | 119    | 118.91 |
|-------|-------|-------------------------------|--------|--------|--------|--------|--------|
| 22042 | 22042 | DallasFort WorthArlington, TX | 115.92 | 90.22  | 101.95 | 117.33 | 84.43  |
| 22366 | 22366 | Davenport, IAIL               | 90.86  | 140.14 | 73.06  | 128.02 | 121.31 |
| 22528 | 22528 | Dayton, OH                    | 87.21  | 126.45 | 89.21  | 95.11  | 96.47  |
| 23500 | 23500 | DentonLewisville, TX          | 104.86 | 111.25 | 66.35  | 100.65 | 98.54  |
| 23527 | 23527 | DenverAurora, CO              | 128.15 | 94.52  | 118.79 | 127.61 | 110.96 |
| 23743 | 23743 | Des Moines, IA                | 99.26  | 110    | 92.79  | 100.45 | 103.87 |
| 23824 | 23824 | Detroit, MI                   | 106.01 | 112.41 | 91.65  | 109.31 | 85.73  |
| 25228 | 25228 | Durham, NC                    | 94.32  | 67.57  | 96.34  | 68.93  | 76.75  |
| 27253 | 27253 | El Paso, TXNM                 | 118.51 | 78.44  | 78.15  | 123.97 | 95.69  |
| 28117 | 28117 | Eugene, OR                    | 114.84 | 134.37 | 134.15 | 123.07 | 152.54 |
| 28333 | 28333 | Evansville, INKY              | 94.15  | 101.62 | 94.07  | 105.58 | 108.97 |
| 29440 | 29440 | Fayetteville, NC              | 79.4   | 73.65  | 67.16  | 64.43  | 61.05  |
|       |       | FayettevilleSpringdaleRogers, |        |        |        |        |        |
| 29494 | 29494 | ARMO                          | 81.99  | 95.85  | 95.95  | 69.57  | 85.16  |
| 30628 | 30628 | Fort Collins, CO              | 101.36 | 112.13 | 97.17  | 104.12 | 115.05 |
| 31087 | 31087 | Fort Wayne, IN                | 85.44  | 100.41 | 93.76  | 86.58  | 93.59  |
| 31843 | 31843 | Fresno, CA                    | 128.7  | 131.47 | 85.2   | 114.97 | 122.62 |
| 34300 | 34300 | Grand Rapids, MI              | 91.17  | 108.19 | 107.46 | 74.4   | 92.57  |
| 34813 | 34813 | Green Bay, WI                 | 93.27  | 91.28  | 74.78  | 92.29  | 92.67  |
| 35164 | 35164 | Greensboro, NC                | 87.97  | 98.75  | 92.59  | 69.88  | 86.85  |
| 35461 | 35461 | Greenville, SC                | 67.92  | 75.26  | 89.88  | 57.88  | 60.57  |
| 35920 | 35920 | Gulfport, MS                  | 68.81  | 73.89  | 85.65  | 104.8  | 85.14  |
| 37081 | 37081 | Harrisburg, PA                | 90.63  | 110.89 | 104.73 | 119.9  | 113.49 |
| 37243 | 37243 | Hartford, CT                  | 93.32  | 106.67 | 129.53 | 45.2   | 84.27  |
| 38647 | 38647 | Hickory, NC                   | 46.92  | 78.41  | 72.2   | 44.94  | 48.64  |
| 40429 | 40429 | Houston, TX                   | 114.84 | 88.59  | 100.16 | 121.05 | 84.54  |
| 40753 | 40753 | Huntington, WVKYOH            | 78.77  | 114.67 | 141.6  | 119.14 | 133.96 |
| 40780 | 40780 | Huntsville, AL                | 73.08  | 63.42  | 81.92  | 96.52  | 74.11  |
| 41212 | 41212 | Indianapolis, IN              | 94.06  | 90.56  | 95.71  | 88.12  | 76.17  |
| 41347 | 41347 | IndioCathedral City, CA       | 96.72  | 112.31 | 71.8   | 107.44 | 101.29 |
| 42211 | 42211 | Jackson, MS                   | 75.8   | 70.34  | 112    | 70.53  | 77.22  |
| 42346 | 42346 | Jacksonville, FL              | 96.67  | 84.48  | 99.64  | 97.33  | 83.97  |
| 43723 | 43723 | Kalamazoo, MI                 | 76.6   | 86.21  | 104.69 | 69.49  | 86.63  |
| 43912 | 43912 | Kansas City, MOKS             | 98.85  | 105.06 | 92.38  | 103.91 | 88.64  |
| 44479 | 44479 | KennewickPasco, WA            | 89.99  | 107.69 | 89.25  | 89.51  | 102.36 |
| 44992 | 44992 | Killeen, TX                   | 95.9   | 100.91 | 69.3   | 101.84 | 98.59  |
| 45451 | 45451 | Kissimmee, FL                 | 87.75  | 49.1   | 60.42  | 104.82 | 67.9   |
| 45640 | 45640 | Knoxville, TN                 | 71.09  | 53.58  | 155.82 | 67.02  | 79.3   |
| 46045 | 46045 | Lafayette, LA                 | 81.01  | 94.51  | 92.99  | 88.43  | 92.42  |

| 46828 | 46828 | Lakeland, FL                      | 86.1   | 46.46  | 106.74 | 106.84 | 87.65  |
|-------|-------|-----------------------------------|--------|--------|--------|--------|--------|
| 47530 | 47530 | Lancaster, PA                     | 90.53  | 127.52 | 132.24 | 79.34  | 116.07 |
| 47611 | 47611 | LancasterPalmdale, CA             | 111.72 | 111.36 | 54.81  | 82.34  | 90.2   |
| 47719 | 47719 | Lansing, MI                       | 98.23  | 68.2   | 134.04 | 86.9   | 102.07 |
| 47854 | 47854 | Laredo, TX                        | 123.87 | 131.21 | 81.56  | 166.54 | 151.8  |
| 47995 | 47962 | Las VegasHenderson, NV            | 147.64 | 63.47  | 121.83 | 107.58 | 102.24 |
| 49582 | 49582 | Lexington-Fayette, KY             | 126.87 | 122.82 | 121.63 | 98.98  | 136.19 |
| 49933 | 49933 | Lincoln, NE                       | 118.63 | 127.46 | 97.02  | 141.77 | 143.38 |
| 50392 | 50392 | Little Rock, AR                   | 86.38  | 82.4   | 97.12  | 115.29 | 95.84  |
|       |       | Los AngelesLong Beach             |        |        |        |        |        |
| 51445 | 51445 | Anaheim, CA                       | 212.21 | 144.75 | 102.23 | 138.92 | 143.42 |
| 51755 | 51715 | Louisville/Jefferson County, KYIN | 97.86  | 82.91  | 92.73  | 90.53  | 79.4   |
| 51877 | 51877 | Lubbock, TX                       | 107.82 | 127.9  | 75.58  | 130.09 | 126.98 |
| 52390 | 52390 | McAllen, TX                       | 88.19  | 63.8   | 85.12  | 99.04  | 71.63  |
| 53200 | 53200 | Madison, WI                       | 118.16 | 121.82 | 182.19 | 99.33  | 152.87 |
| 56116 | 56116 | Memphis, TNMSAR                   | 93.13  | 63.89  | 101.9  | 86.31  | 70.86  |
| 56602 | 56602 | Miami, FL                         | 143.68 | 108.89 | 109.46 | 134.49 | 112.06 |
| 57466 | 57466 | Milwaukee, WI                     | 112.66 | 116.03 | 164.62 | 112.47 | 132.07 |
| 57628 | 57628 | MinneapolisSt. Paul, MNWI         | 112.17 | 98.47  | 119.91 | 108.34 | 97.57  |
|       |       | Mission ViejoLake ForestSan       |        |        |        |        |        |
| 57709 | 57709 | Clemente, CA                      | 127.87 | 147.54 | 62.55  | 118.63 | 122.47 |
| 57925 | 57925 | Mobile, AL                        | 77.59  | 103.81 | 71.28  | 106.28 | 90.23  |
| 58006 | 58006 | Modesto, CA                       | 127.77 | 145.02 | 79.06  | 109.17 | 130    |
| 58600 | 58600 | Montgomery, AL                    | 85.32  | 118.52 | 97.11  | 76.74  | 100.22 |
| 60799 | 87004 | MurrietaTemeculaMenifee, CA       | 103.58 | 98.68  | 60.2   | 73.39  | 77.41  |
| 60895 | 60895 | Myrtle BeachSocastee, SCNC        | 57     | 48.17  | 100.23 | 94.2   | 71.35  |
| 61273 | 61273 | Nashville-Davidson, TN            | 87.51  | 47.43  | 111.18 | 70.03  | 60.27  |
| 62407 | 62407 | New Haven, CT                     | 90.04  | 111.59 | 139.46 | 58.5   | 100.08 |
| 62677 | 62677 | New Orleans, LA                   | 125.35 | 102.93 | 93.92  | 187.3  | 138.57 |
| 63217 | 63217 | New YorkNewark, NYNJCT            | 197.5  | 106.8  | 179.1  | 125.06 | 142.71 |
| 64135 | 64135 | NorwichNew London, CTRI           | 72.73  | 88.4   | 132.22 | 60.7   | 93.49  |
| 64945 | 64945 | OgdenLayton, UT                   | 98.34  | 117.46 | 63.46  | 87.66  | 87.35  |
| 65080 | 65080 | Oklahoma City, OK                 | 95.88  | 87.23  | 96.6   | 101.44 | 87.68  |
| 65269 | 65269 | Omaha, NEIA                       | 110.48 | 110.3  | 98.07  | 128.31 | 116.15 |
| 65863 | 65863 | Orlando, FL                       | 109.38 | 78.11  | 92.26  | 109.72 | 84.41  |
| 66673 | 66673 | Oxnard, CA                        | 147.55 | 137.14 | 82.42  | 135.08 | 146.19 |
| 67105 | 67105 | Palm BayMelbourne, FL             | 88.7   | 78.17  | 60.31  | 88.15  | 68.9   |
|       |       | Palm CoastDaytona BeachPort       |        |        |        |        |        |
| 67134 | 22636 | Orange, FL                        | 84.24  | 82.84  | 66.42  | 108.04 | 82.45  |
| 68482 | 68482 | Pensacola, FLAL                   | 73.9   | 71.76  | 74.11  | 111.04 | 78.47  |

| 68509  | 68509  | Peoria, IL                      | 85.82  | 104.21 | 125.17 | 113.45 | 120.49 |
|--------|--------|---------------------------------|--------|--------|--------|--------|--------|
| 69076  | 69076  | Philadelphia, PANJDEMD          | 127.16 | 124.32 | 131.46 | 105.73 | 109.05 |
| 69184  | 69184  | PhoenixMesa, AZ                 | 119.2  | 79.12  | 99.99  | 106.59 | 80.27  |
| 69697  | 69697  | Pittsburgh, PA                  | 93.7   | 119.21 | 125.55 | 117.1  | 109.25 |
| 71263  | 71263  | Portland, ME                    | 88.48  | 123.43 | 148.13 | 85.12  | 130.27 |
| 71317  | 71317  | Portland, ORWA                  | 127.64 | 129.26 | 107.58 | 135.17 | 126.14 |
| 71479  | 71479  | Port St. Lucie, FL              | 78.65  | 57.1   | 76.99  | 103.04 | 71.26  |
| 71803  | 71803  | PoughkeepsieNewburgh, NYNJ      | 75.26  | 112.65 | 121.96 | 43.25  | 84.82  |
| 72559  | 72559  | ProvoOrem, UT                   | 113.81 | 130.08 | 77.33  | 100.13 | 110.6  |
| 73261  | 73261  | Raleigh, NC                     | 90.27  | 77.3   | 112.47 | 54.9   | 68.86  |
| 73693  | 73693  | Reading, PA                     | 127.71 | 150.87 | 124.45 | 147.46 | 169.32 |
| 74179  | 74179  | Reno, NVCA                      | 101.13 | 59.47  | 123.12 | 94.24  | 95.67  |
| 74746  | 74746  | Richmond, VA                    | 94.09  | 83.03  | 111.23 | 109.31 | 93.1   |
| 75340  | 75340  | RiversideSan Bernardino, CA     | 119.16 | 112.94 | 81.81  | 82.29  | 84.2   |
| 75421  | 75421  | Roanoke, VA                     | 83.87  | 108.45 | 81.82  | 110.57 | 105.72 |
| 75664  | 75664  | Rochester, NY                   | 103    | 101.93 | 103.14 | 61.44  | 85.12  |
| 75718  | 75718  | Rockford, IL                    | 86.89  | 103.05 | 96.03  | 119.57 | 109.98 |
|        |        | Round Lake BeachMcHenry         |        |        |        |        |        |
| 76474  | 76474  | Grayslake, ILWI                 | 80.35  | 83.85  | 79.57  | 90.59  | 81.75  |
| 77068  | 77068  | Sacramento, CA                  | 125.63 | 104.85 | 109.31 | 107.52 | 106.02 |
| 77770  | 77770  | St. Louis, MOIL                 | 100.04 | 114.26 | 104.27 | 110.7  | 96.18  |
| 78229  | 78229  | Salem, OR                       | 115.59 | 125.71 | 112.5  | 103.81 | 133.51 |
| 70.400 | 70.400 | Salt Lake CityWest Valley City, | 420 72 | 110.01 | 04.42  | 00.0   | 405.04 |
| 78499  | 78499  |                                 | 130.73 | 116.64 | 84.13  | 99.9   | 105.81 |
| 78580  | 78580  | San Antonio, TX                 | 113.62 | 85.4   | 92.02  | 104.86 | 85.2   |
| 78904  | 78904  | San FranciscoOakland, CA        | 205.69 | 129.92 | 164.34 | 153.38 | 180.94 |
| 79039  | 79039  | San Jose, CA                    | 181.13 | 136.26 | 86.67  | 127.03 | 139.98 |
| 79309  | 79309  | Santa Clarita, CA               | 120.29 | 129.69 | 81.81  | 93.51  | 119.53 |
| 79606  | 79606  | SarasotaBradenton, FL           | 84.4   | 94.94  | 93.16  | 115.72 | 93.95  |
| 79768  | 79768  | Savannah, GA                    | 82.3   | 96.52  | 110.11 | 111.85 | 109.61 |
| 80227  | 80227  | Scranton, PA                    | 95.52  | 145.27 | 102.54 | 133.3  | 135.5  |
| 80389  | 80389  | Seattle, WA                     | 118.83 | 89.41  | 142.43 | 110.09 | 104.65 |
| 81739  | 81739  | Shreveport, LA                  | 80.89  | 74.13  | 70.96  | 102.49 | 79.07  |
| 83116  | 83116  | South Bend, INMI                | 79.42  | 91.31  | 105.6  | 129.25 | 110.77 |
| 83764  | 83764  | Spokane, WA                     | 97.43  | 109.36 | 103.98 | 141.33 | 125.49 |
| 83953  | 83953  | Springfield, MO                 | 86.57  | 110.76 | 68.49  | 115.03 | 101.06 |
| 85087  | 85087  | Stockton, CA                    | 126.41 | 131.34 | 98.73  | 117.22 | 134.67 |
| 86302  | 86302  | Syracuse, NY                    | 100.81 | 110.01 | 133.54 | 85.98  | 116.05 |
| 86464  | 86464  | Tallahassee, FL                 | 97.65  | 71.33  | 144.71 | 84.14  | 109.39 |
| 86599  | 86599  | TampaSt. Petersburg, FL         | 103.05 | 92.69  | 93.15  | 122.73 | 87.63  |

| 87868 | 87868 | Toledo, OHMI            | 94.96  | 127.77 | 90.58  | 100.46 | 106.97 |
|-------|-------|-------------------------|--------|--------|--------|--------|--------|
| 88462 | 88462 | Trenton, NJ             | 123.71 | 121.54 | 106.59 | 108.84 | 132.08 |
| 88732 | 88732 | Tucson, AZ              | 100    | 70.98  | 90.13  | 94.08  | 77.54  |
| 88948 | 88948 | Tulsa, OK               | 90.85  | 97.81  | 96.64  | 99.33  | 92.29  |
| 90541 | 90541 | VictorvilleHesperia, CA | 82.38  | 67.79  | 57.01  | 61.88  | 54.15  |
| 90946 | 90946 | Visalia, CA             | 118.08 | 126.58 | 92.94  | 127.07 | 137.22 |
| 92242 | 92242 | Washington, DCVAMD      | 142.28 | 96.36  | 136.7  | 104.92 | 107.69 |
| 95077 | 95077 | Wichita, KS             | 96.94  | 92.64  | 94.44  | 110.31 | 100.02 |
| 95833 | 95833 | Wilmington, NC          | 81.25  | 102.01 | 89.16  | 96.91  | 99.02  |
| 96670 | 96670 | Winston-Salem, NC       | 66.31  | 68.97  | 88.15  | 54.29  | 55.56  |
| 96697 | 96697 | Winter Haven, FL        | 67.51  | 52.97  | 77.78  | 110.62 | 75.86  |
| 97750 | 97750 | York, PA                | 91.8   | 129.86 | 121.89 | 103.78 | 129.62 |
| 97831 | 97831 | Youngstown, OHPA        | 76.37  | 134.31 | 77.47  | 90.73  | 96.18  |

| UA10  | UA00  | UZA name                       | density  | mix      | centering<br>factor00 | street   | composite |
|-------|-------|--------------------------------|----------|----------|-----------------------|----------|-----------|
| code  | code  | AberdeenBel Air SouthBel Air   | factor00 | factor00 | Tactoroo              | factor00 | index00   |
| 199   | 199   | North, MD                      | 85.05    | 130.29   | 74.74                 | 47.27    | 85.29     |
| 766   | 766   | Akron, OH                      | 83.56    | 124.2    | 91.55                 | 81.39    | 89.78     |
| 970   | 928   | AlbanySchenectady, NY          | 97.62    | 126.41   | 111.23                | 76.74    | 102.59    |
| 1171  | 1171  | Albuquerque, NM                | 115.4    | 83.47    | 88.92                 | 111.01   | 96.53     |
| 1495  | 1495  | Allentown, PANJ                | 98.6     | 154.6    | 98.74                 | 137.75   | 133.48    |
| 2602  | 2602  | Ann Arbor, MI                  | 109.06   | 89.82    | 125.09                | 58.53    | 98.12     |
| 2683  | 2683  | Antioch, CA                    | 112.73   | 162.91   | 50.78                 | 108.2    | 122       |
| 2764  | 2764  | Appleton, WI                   | 109.95   | 136.48   | 103.75                | 115.15   | 135.96    |
| 3358  | 3358  | Asheville, NC                  | 56.51    | 112.01   | 102.96                | 63.14    | 81.59     |
| 3817  | 3817  | Atlanta, GA                    | 88.54    | 90.28    | 106.29                | 19.9     | 39.5      |
| 3898  | 3898  | Atlantic City, NJ              | 93.52    | 86.06    | 158.52                | 140.57   | 139.23    |
| 4222  | 4222  | Augusta-Richmond County, GASC  | 74.42    | 87.91    | 89.02                 | 70.65    | 71.97     |
| 4384  | 4384  | Austin, TX                     | 121.77   | 113.65   | 133.13                | 82.98    | 113.25    |
| 4681  | 4681  | Bakersfield, CA                | 121.27   | 134.54   | 78.88                 | 118.03   | 122.72    |
| 4843  | 4843  | Baltimore, MD                  | 129.5    | 120.15   | 128.93                | 96.29    | 113.51    |
| 5680  | 5680  | Baton Rouge, LA                | 83.46    | 72.66    | 85.07                 | 64.16    | 61.39     |
| 7786  | 7786  | Birmingham, AL                 | 81.96    | 94.9     | 100.51                | 99.74    | 86.68     |
| 8785  | 8785  | Boise City, ID                 | 104.83   | 131.24   | 71.93                 | 104.89   | 110.79    |
| 8974  | 8974  | Bonita Springs, FL             | 76.78    | 77.85    | 61.38                 | 46.22    | 52.49     |
| 10972 | 10972 | Brownsville, TX                | 108.24   | 107.19   | 65.79                 | 106.8    | 106.23    |
| 11350 | 11350 | Buffalo, NY                    | 114.62   | 131.15   | 103.32                | 75.28    | 101.45    |
| 13375 | 13375 | Canton, OH                     | 83.07    | 135.07   | 79.23                 | 123      | 114.04    |
| 13510 | 13510 | Cape Coral, FL                 | 81.59    | 79.16    | 95.48                 | 90.72    | 82.2      |
| 15508 | 15508 | CharlestonNorth Charleston, SC | 87.45    | 95.25    | 127.26                | 96.79    | 103.51    |
| 15670 | 15670 | Charlotte, NCSC                | 85.5     | 99.95    | 108.27                | 35.77    | 66.06     |
| 15832 | 15832 | Chattanooga, TNGA              | 65.83    | 55.21    | 92.3                  | 53.9     | 49.7      |
| 16264 | 16264 | Chicago, ILIN                  | 148.83   | 120.65   | 131.04                | 122.64   | 117.76    |
| 16885 | 16885 | Cincinnati, OHKYIN             | 100.48   | 116.34   | 116.18                | 61.77    | 84.83     |
| 17668 | 17668 | Cleveland, OH                  | 111.72   | 122.33   | 112.13                | 56.21    | 86.01     |
| 18964 | 18964 | Columbia, SC                   | 82.21    | 84.52    | 125.63                | 77.91    | 88.92     |
| 19099 | 19099 | Columbus, GAAL                 | 85.1     | 69       | 117.06                | 77.88    | 86.41     |
| 19234 | 19234 | Columbus, OH                   | 114.53   | 124.36   | 102.14                | 96.89    | 105.27    |
| 19504 | 19504 | Concord, CA                    | 123.25   | 126.99   | 82.93                 | 82.12    | 104.03    |
| 19558 | 19558 | Concord, NC                    | 55.14    | 99.79    | 79.86                 | 68.46    | 76.14     |
| 19755 | 87328 | ConroeThe Woodlands, TX        | 94.53    | 92.36    | 86.68                 | 54.45    | 88.85     |

## **Appendix E. Urbanized Areas Compactness Indices 2000**

| 20287 | 20287 | Corpus Christi, TX            | 105.97 | 125.48 | 84.91  | 104.4  | 113.13 |
|-------|-------|-------------------------------|--------|--------|--------|--------|--------|
| 22042 | 22042 | DallasFort WorthArlington, TX | 117.14 | 102.37 | 95.57  | 98.9   | 81.46  |
| 22366 | 22366 | Davenport, IAIL               | 96.81  | 152.84 | 73.58  | 114.3  | 120.78 |
| 22528 | 22528 | Dayton, OH                    | 89.73  | 123.77 | 101.57 | 88.21  | 96.56  |
| 23500 | 23500 | DentonLewisville, TX          | 97.48  | 116.34 | 67.11  | 75.13  | 86.9   |
| 23527 | 23527 | DenverAurora, CO              | 135.76 | 108.29 | 116.57 | 129.44 | 120.11 |
| 23743 | 23743 | Des Moines, IA                | 111.38 | 121.97 | 97.25  | 101.92 | 115.33 |
| 23824 | 23824 | Detroit, MI                   | 113.29 | 112.29 | 106.16 | 100.28 | 89.38  |
| 25228 | 25228 | Durham, NC                    | 91.24  | 77.48  | 106.3  | 58.06  | 78.11  |
| 27253 | 27253 | El Paso, TXNM                 | 118.39 | 84.76  | 79.51  | 111.2  | 93.22  |
| 28117 | 28117 | Eugene, OR                    | 121.5  | 141.47 | 130.73 | 114.89 | 151.42 |
| 28333 | 28333 | Evansville, INKY              | 96.61  | 124.11 | 99.57  | 100.57 | 116.75 |
| 29440 | 29440 | Fayetteville, NC              | 78.97  | 98.97  | 62.63  | 56.65  | 64.13  |
|       |       | FayettevilleSpringdaleRogers, |        |        |        |        |        |
| 29494 | 29494 | ARMO                          | 86.95  | 121.68 | 115.49 | 60.4   | 104.38 |
| 30628 | 30628 | Fort Collins, CO              | 105.79 | 111.9  | 89.91  | 95.01  | 109.69 |
| 31087 | 31087 | Fort Wayne, IN                | 91.02  | 114.76 | 89.81  | 86.8   | 97.94  |
| 31843 | 31843 | Fresno, CA                    | 131.07 | 145.64 | 93.2   | 120.39 | 134.15 |
| 34300 | 34300 | Grand Rapids, MI              | 94.4   | 120    | 102.39 | 61.32  | 89.35  |
| 34813 | 34813 | Green Bay, WI                 | 99.89  | 115.98 | 71.74  | 91.68  | 101.39 |
| 35164 | 35164 | Greensboro, NC                | 92.19  | 125.19 | 96.01  | 67.38  | 98.07  |
| 35461 | 35461 | Greenville, SC                | 75.59  | 101.55 | 89.54  | 59.56  | 74.82  |
| 35920 | 35920 | Gulfport, MS                  | 77.88  | 94.44  | 94.46  | 91.98  | 92.1   |
| 37081 | 37081 | Harrisburg, PA                | 90.93  | 118.89 | 103.03 | 108.09 | 110.9  |
| 37243 | 37243 | Hartford, CT                  | 93.14  | 114.07 | 126.66 | 32.36  | 79.58  |
| 38647 | 38647 | Hickory, NC                   | 49.14  | 81.34  | 75.33  | 42.67  | 48.76  |
| 40429 | 40429 | Houston, TX                   | 115.73 | 98.06  | 94.99  | 97.43  | 79.22  |
| 40753 | 40753 | Huntington, WVKYOH            | 82.45  | 124.09 | 152.46 | 109.9  | 138    |
| 40780 | 40780 | Huntsville, AL                | 73.26  | 78.59  | 90.56  | 55.71  | 67.33  |
| 41212 | 41212 | Indianapolis, IN              | 97.94  | 101.45 | 112.38 | 86.6   | 88.58  |
| 41347 | 41347 | IndioCathedral City, CA       | 99.18  | 127.03 | 71.49  | 107.22 | 108.33 |
| 42211 | 42211 | Jackson, MS                   | 86.8   | 87.99  | 112.18 | 63.13  | 84.77  |
| 42346 | 42346 | Jacksonville, FL              | 100.97 | 92.98  | 92.56  | 96.26  | 85.83  |
| 43723 | 43723 | Kalamazoo, MI                 | 82.13  | 111.47 | 99.11  | 64.66  | 92.53  |
| 43912 | 43912 | Kansas City, MOKS             | 101.66 | 115.2  | 90.55  | 99.55  | 90.81  |
| 44479 | 44479 | KennewickPasco, WA            | 84.2   | 126.72 | 99.02  | 89.04  | 111.45 |
| 44992 | 44992 | Killeen, TX                   | 99.15  | 110.93 | 77.07  | 98.45  | 105.12 |
| 45451 | 45451 | Kissimmee, FL                 | 85.68  | 66.13  | 58.9   | 106.74 | 76.56  |
| 45640 | 45640 | Knoxville, TN                 | 68.61  | 70.74  | 130.5  | 57.65  | 71.74  |
| 46045 | 46045 | Lafayette, LA                 | 78.58  | 104.29 | 100.28 | 74.01  | 93.04  |

| 46828 | 46828 | Lakeland, FL                      | 76.03  | 86.84  | 114.04 | 85.81  | 94.03  |
|-------|-------|-----------------------------------|--------|--------|--------|--------|--------|
| 47530 | 47530 | Lancaster, PA                     | 96.79  | 132.28 | 126.42 | 65.11  | 112.02 |
| 47611 | 47611 | LancasterPalmdale, CA             | 109.53 | 123.6  | 56.21  | 73.56  | 91.06  |
| 47719 | 47719 | Lansing, MI                       | 101.03 | 96.55  | 105.33 | 80.06  | 97.71  |
| 47854 | 47854 | Laredo, TX                        | 134.65 | 148.02 | 86.2   | 189.55 | 174.12 |
| 47995 | 47962 | Las VegasHenderson, NV            | 155.61 | 69.07  | 127.05 | 105.4  | 111.38 |
| 49582 | 49582 | Lexington-Fayette, KY             | 132.62 | 121.28 | 125.89 | 78.65  | 130.01 |
| 49933 | 49933 | Lincoln, NE                       | 118.03 | 133.12 | 97.15  | 135.15 | 141.19 |
| 50392 | 50392 | Little Rock, AR                   | 93     | 95.64  | 93.19  | 103.44 | 96.64  |
|       |       | Los AngelesLong Beach             |        |        |        |        |        |
| 51445 | 51445 | Anaheim, CA                       | 212.14 | 131.99 | 105.37 | 127.52 | 135.59 |
| 51755 | 51715 | Louisville/Jefferson County, KYIN | 101.73 | 93.98  | 90.76  | 81.59  | 80.16  |
| 51877 | 51877 | Lubbock, TX                       | 112.3  | 132.03 | 74.66  | 124.18 | 126.23 |
| 52390 | 52390 | McAllen, TX                       | 76.58  | 79.91  | 84.37  | 90.18  | 70.76  |
| 53200 | 53200 | Madison, WI                       | 122.06 | 126.86 | 158.37 | 101.3  | 147.2  |
| 56116 | 56116 | Memphis, TNMSAR                   | 101.44 | 72.29  | 100.26 | 71.3   | 69.71  |
| 56602 | 56602 | Miami, FL                         | 142.94 | 107.92 | 93.37  | 131.01 | 104.22 |
| 57466 | 57466 | Milwaukee, WI                     | 118.7  | 128.61 | 125.45 | 106.94 | 120.5  |
| 57628 | 57628 | MinneapolisSt. Paul, MNWI         | 113.41 | 90.31  | 118.69 | 95.92  | 89.25  |
|       |       | Mission ViejoLake ForestSan       |        |        |        |        |        |
| 57709 | 57709 | Clemente, CA                      | 129.04 | 140.04 | 64.39  | 92.13  | 108.57 |
| 57925 | 57925 | Mobile, AL                        | 81.05  | 108.53 | 73.69  | 70.94  | 77.49  |
| 58006 | 58006 | Modesto, CA                       | 127.86 | 147.59 | 97.76  | 105.06 | 135.64 |
| 58600 | 58600 | Montgomery, AL                    | 95.52  | 130.65 | 103.01 | 80.25  | 112.96 |
| 60799 | 87004 | MurrietaTemeculaMenifee, CA       | 95.58  | 105.7  | 108.31 | 72.89  | 100.43 |
| 60895 | 60895 | Myrtle BeachSocastee, SCNC        | 66.75  | 80.03  | 108.57 | 105.93 | 98.74  |
| 61273 | 61273 | Nashville-Davidson, TN            | 89.26  | 67.83  | 106.22 | 46.1   | 58.11  |
| 62407 | 62407 | New Haven, CT                     | 88.44  | 119.87 | 132.78 | 47.06  | 93.54  |
| 62677 | 62677 | New Orleans, LA                   | 161.24 | 106.84 | 95.97  | 181.06 | 149.64 |
| 63217 | 63217 | New YorkNewark, NYNJCT            | 197.18 | 115.6  | 170.57 | 120.19 | 141.75 |
| 64135 | 64135 | NorwichNew London, CTRI           | 70.09  | 97.16  | 133.84 | 48.33  | 90.23  |
| 64945 | 64945 | OgdenLayton, UT                   | 98.24  | 124.92 | 64.85  | 76.93  | 86.84  |
| 65080 | 65080 | Oklahoma City, OK                 | 100.17 | 107.78 | 93.5   | 94.11  | 92.8   |
| 65269 | 65269 | Omaha, NEIA                       | 113.56 | 122.98 | 98.8   | 124.72 | 120.65 |
| 65863 | 65863 | Orlando, FL                       | 106.07 | 87.13  | 94.04  | 96.83  | 83.39  |
| 66673 | 66673 | Oxnard, CA                        | 151.09 | 138.91 | 76.66  | 115.75 | 136.4  |
| 67105 | 67105 | Palm BayMelbourne, FL             | 76.29  | 75.93  | 62.16  | 77.64  | 58.18  |
|       |       | Palm CoastDaytona BeachPort       |        |        |        |        |        |
| 67134 | 22636 | Orange, FL                        | 95.16  | 98.84  | 68.39  | 109.08 | 94.85  |
| 68482 | 68482 | Pensacola, FLAL                   | 73.65  | 74.45  | 72.66  | 94.85  | 69.79  |

| 68509 | 68509 | Peoria, IL                      | 91.09  | 126.26 | 99.4   | 105.88 | 115.78 |
|-------|-------|---------------------------------|--------|--------|--------|--------|--------|
| 69076 | 69076 | Philadelphia, PANJDEMD          | 131.05 | 121.96 | 126.98 | 101.25 | 106.14 |
| 69184 | 69184 | PhoenixMesa, AZ                 | 130.95 | 100.13 | 97.92  | 103.57 | 92.82  |
| 69697 | 69697 | Pittsburgh, PA                  | 96.98  | 127.23 | 118.72 | 106.44 | 105.11 |
| 71263 | 71263 | Portland, ME                    | 89.38  | 134.9  | 155.27 | 66.41  | 128.14 |
| 71317 | 71317 | Portland, ORWA                  | 124.3  | 134.07 | 102.05 | 128.07 | 121.95 |
| 71479 | 71479 | Port St. Lucie, FL              | 71.15  | 72.97  | 75.25  | 94.03  | 70.87  |
| 71803 | 71803 | PoughkeepsieNewburgh, NYNJ      | 78.28  | 112.78 | 115.34 | 22.28  | 74.14  |
| 72559 | 72559 | ProvoOrem, UT                   | 127.45 | 156.85 | 75.63  | 94.04  | 126.13 |
| 73261 | 73261 | Raleigh, NC                     | 85.53  | 110.35 | 75.3   | 52.22  | 67.3   |
| 73693 | 73693 | Reading, PA                     | 119.44 | 157.15 | 126.12 | 118.53 | 155.74 |
| 74179 | 74179 | Reno, NVCA                      | 113.14 | 72     | 126.28 | 92.04  | 105.82 |
| 74746 | 74746 | Richmond, VA                    | 92.38  | 90.82  | 104.41 | 88.19  | 83.85  |
| 75340 | 75340 | RiversideSan Bernardino, CA     | 116.92 | 113.99 | 91.49  | 83.23  | 89.17  |
| 75421 | 75421 | Roanoke, VA                     | 86.36  | 111.67 | 76.59  | 86.48  | 93.5   |
| 75664 | 75664 | Rochester, NY                   | 108.58 | 97.82  | 103.61 | 50.71  | 79.59  |
| 75718 | 75718 | Rockford, IL                    | 89.96  | 114.18 | 95.46  | 103.81 | 107.07 |
|       |       | Round Lake BeachMcHenry         |        |        |        |        |        |
| 76474 | 76474 | Grayslake, ILWI                 | 76.99  | 115.86 | 79.25  | 75.95  | 86.73  |
| 77068 | 77068 | Sacramento, CA                  | 124.59 | 120.43 | 124.87 | 98.6   | 115.3  |
| 77770 | 77770 | St. Louis, MOIL                 | 103.99 | 123.85 | 101.53 | 96.97  | 93.99  |
| 78229 | 78229 | Salem, OR                       | 115.57 | 137.9  | 112.49 | 99.24  | 134.82 |
|       |       | Salt Lake CityWest Valley City, |        | 100.11 |        |        |        |
| 78499 | 78499 | UT                              | 133.2  | 130.41 | 88.53  | 99.2   | 113.34 |
| 78580 | 78580 | San Antonio, TX                 | 117.87 | 96.14  | 99.08  | 106.77 | 96.28  |
| 78904 | 78904 | San FranciscoOakland, CA        | 219.66 | 128.39 | 162.41 | 149.84 | 184.06 |
| 79039 | 79039 | San Jose, CA                    | 178.91 | 134.54 | 82.37  | 116.63 | 131.9  |
| 79309 | 79309 | Santa Clarita, CA               | 118.24 | 137.68 | 79.83  | 67.1   | 111.89 |
| 79606 | 79606 | SarasotaBradenton, FL           | 90.69  | 100.26 | 114.14 | 110.88 | 104.18 |
| 79768 | 79768 | Savannah, GA                    | 99.99  | 89.55  | 108.58 | 123.77 | 117.33 |
| 80227 | 80227 | Scranton, PA                    | 101.5  | 155.32 | 100.64 | 129.53 | 136.8  |
| 80389 | 80389 | Seattle, WA                     | 113.58 | 93.37  | 135.64 | 97.4   | 96.57  |
| 81739 | 81739 | Shreveport, LA                  | 86.6   | 82.72  | 74.56  | 93.39  | 80.28  |
| 83116 | 83116 | South Bend, INMI                | 83     | 111.98 | 104.07 | 99.66  | 104.93 |
| 83764 | 83764 | Spokane, WA                     | 99.69  | 110.75 | 102.36 | 140.36 | 124.73 |
| 83953 | 83953 | Springfield, MO                 | 89.76  | 138.09 | 66.86  | 87.37  | 101    |
| 85087 | 85087 | Stockton, CA                    | 134.42 | 145.18 | 104.41 | 124.09 | 147.55 |
| 86302 | 86302 | Syracuse, NY                    | 104.93 | 115.92 | 130.6  | 76.08  | 112.42 |
| 86464 | 86464 | Tallahassee, FL                 | 93.87  | 68.08  | 112.12 | 61.01  | 82.66  |
| 86599 | 86599 | TampaSt. Petersburg, FL         | 106.59 | 94.04  | 89.98  | 122.04 | 88.57  |

| 87868 | 87868 | Toledo, OHMI            | 102.27 | 129.37 | 93.5   | 92.92  | 106.17 |
|-------|-------|-------------------------|--------|--------|--------|--------|--------|
| 88462 | 88462 | Trenton, NJ             | 130.68 | 138.84 | 103.24 | 106.32 | 137.57 |
| 88732 | 88732 | Tucson, AZ              | 103.97 | 93.06  | 82.2   | 91.29  | 83.13  |
| 88948 | 88948 | Tulsa, OK               | 96.26  | 101.83 | 93.07  | 96.58  | 92.84  |
| 90541 | 90541 | VictorvilleHesperia, CA | 74.79  | 84.24  | 56.75  | 51.04  | 55.43  |
| 90946 | 90946 | Visalia, CA             | 116.84 | 142.48 | 107.53 | 108.93 | 145.05 |
| 92242 | 92242 | Washington, DCVAMD      | 133.79 | 104.48 | 112.04 | 85.55  | 90.84  |
| 95077 | 95077 | Wichita, KS             | 101.36 | 107.4  | 97.06  | 112.11 | 108.03 |
| 95833 | 95833 | Wilmington, NC          | 74.31  | 109.17 | 91.78  | 77.06  | 92.18  |
| 96670 | 96670 | Winston-Salem, NC       | 66.67  | 68.56  | 93.67  | 44.02  | 53.49  |
| 96697 | 96697 | Winter Haven, FL        | 72.57  | 72.7   | 75.82  | 100.19 | 80.21  |
| 97750 | 97750 | York, PA                | 84.59  | 139.34 | 129.88 | 93.59  | 128.45 |